Главная » Стены » Углеродная (углеродистая) сталь: виды, производство и применение. Какие бывают марки углеродистой стали Углеродистые стали химический состав марки и применение

Углеродная (углеродистая) сталь: виды, производство и применение. Какие бывают марки углеродистой стали Углеродистые стали химический состав марки и применение

Благодаря своим прочностным характеристикам и доступной цене углеродистая сталь является весьма распространенным сплавом. Его главные элементы - это железо и углерод с минимумом присесей. Из углеродной стали производят различную машиностроительную продукцию, детали трубопроводов и котлов, инструменты. В строительстве сплавы тоже нашли широкое применение.

Основные характеристики

В зависимости от основного своего назначения углеродистые стали делятся на инструментальные и конструкционные, легирующих элементов в их составе практически нет. От обыкновенных стальных сплавов они отличаются еще и тем, что имеют в составе значительно меньше базовых примесей: марганца, магния, кремния. Содержание главного элемента - углерода - варьируется в довольно широких пределах . В составе высокоуглеродистой стали содержится 0,6−2% C, среднеуглеродистой - 0,3−0,6%, низкоуглеродистой - до 0,25%.

Основной элемент определяет свойства и структуру. Во внутренней структуре сплавов с менее чем 0,8% C (сталь доэвтектоидная) - преимущественно перлит и феррит, а при увеличении концентрации главного элемента формируется вторичный цементит.

Представленные стали с преобладанием ферритной структурой высоко пластичны и имеют низкую прочность. Если в структуре преобладает цементит , металл характеризуется высокой прочностью, однако и большой хрупкостью. При повышении содержания C до 0,8−1% растет прочность и твердость, но сильно ухудшается вязкость и пластичность.

Количественное содержание углерода сказывается на технологических характеристиках, в частности, на свариваемости, легкости обработки резанием и давлением.

  • Из низкоуглеродистых сталей изготавливают детали и конструкции, не предназначенные для значительных нагрузок.
  • Характеристики среднеуглеродистых сталей делают их основным конструкционным материалом, который используется в производстве конструкций и деталей для транспортного и общего машиностроения.
  • Высокоуглеродистые сплавы оптимальны для изготовления деталей, которые должны иметь повышенную износостойкость, в производстве измерительного и ударно-штампового инструмента.

Металл, как и иные стальные сплавы, в составе содержат примеси:

  • кремний;
  • фосфор;
  • марганец;
  • азот;
  • серу;
  • водород;
  • кислород.

Кремний и марганец - это полезные примеси, которые вводятся в состав на стадии выплавки для раскисления. Фосфор и сера - вредные примеси , ухудшающие качественные характеристики сплава.

Считается, что легирование и углеродистые виды несовместимы, тем не менее с целью улучшения их технологических и физико-механических характеристик может выполняться микролегирование с помощью добавления различных добавок:

  • бора;
  • титана;
  • циркония;
  • редкоземельных элементов.

С их помощью не удастся превратить металл в нержавейку, но значительно улучшить свойства получится.

Классификация по степени раскисления

На разделение на типы влияет, в частности, степень раскисления. В зависимости от этого параметра наши сплавы делят на полуспокойные, спокойные и кипящие.

Более однородную внутреннюю структуру имеют спокойные стали, чье раскисление достигается путем добавления в расплавленный металл алюминия, ферросилиция и ферромарганца . Благодаря тому, что сплавы нашей категории полностью раскислились в печи, в их составе отсутствует закись железа. Остаточный алюминий, препятствующий росту зерна, обеспечивает мелкозернистую структуру. Она и практически абсолютное отсутствие растворенных газов позволяет получить качественный металл для изготовления из него самых ответственных деталей и конструкций. Наряду с плюсами у спокойных сплавов есть большой минус - достаточно дорогая выплавка.

Есть более дешевые, хотя и менее качественные, углеродистые сплавы, при выплавке которых используют минимум специальных добавок. В структуре такого металла из-за того, что процесс раскисления в печи не довели до конца , есть растворенные газы, негативно отражающиеся на характеристиках. Азот, например, плохо влияет на свариваемость и провоцирует образование трещин в области шва. Развитая ликвация в структуре сплавов приводит к тому, что металлопрокат, сделанный из них, отличается неоднородностью по структуре и механическим характеристикам.

У полуспокойных сталей промежуточное положение по свойствам и степени раскисления. Перед заливкой в изложницы в состав их вводится немного раскислитилей, благодаря которым затвердеванием металла происходит практически без кипения , но выделение газов в нем продолжается. В результате получается отливка, в структуре которой меньше газовых пузырей, чем в кипящих сталях. Эти внутренние поры при последующей прокатке металла завариваются практически полностью.

Большая часть полуспокойных углеродистых сталей используется как конструкционные материалы.

Производство и деление по качеству

Углеродистые стали получают путем использования разных технологий. Различают:

  • качественные углеродистые стали;
  • высококачественные стальные сплавы;
  • углеродистые стальные сплавы обыкновенного качества.

Сплавы обыкновенного качества получают в мартеновских печах, а из них формируются большие слитки. К плавильному оборудованию, использующемуся для получения таких сталей, относятся, в частности, кислородные конвертеры. В сравнении с качественными стальными сплавами, в металле может содержаться много вредных примесей, что отражается на характеристиках и стоимости производства.

Сформированные и застывшие слитки прокатывают горячими или холодными. Горячей прокаткой получают сортовые и фасонные изделия, тонколистовой и толстолистовой металл, широкие металлические полосы. Холодной прокаткой получают тонколистовой металл.

Для производства качественной и высококачественной стали используются мартеновские печи и конвертеры, а также плавильные печи, которые работают на электричестве.

К составу, а именно к наличию в структуре вредных и неметаллических примесей, ГОСТ предъявляет жесткие требования. В высококачественных сталях должно быть не более 0,04% серы и не более 0,035% фосфора . Высококачественные и качественные стальные сплавы благодаря строгим требованиям к способу выплавки и характеристикам имеют повышенную чистоту структуры.

Применение и маркировка

Инструментальные сплавы, в которых 0,65−1,32% C, используются для изготовления различного инструмента. Для улучшения механических свойств инструментов делают закалку материала изготовления.

Из конструкционных сплавов делают детали для разного оборудования, элементы конструкций строительного и машиностроительного назначения, крепежные детали и прочее. Из конструкционной стали делается проволока углеродистая, которая используется в быту , в производстве крепежа, в строительстве, для изготовления пружин. После цементации конструкционные сплавы успешно используются в производстве деталей, подвергающихся при эксплуатации серьезному поверхностному износу и испытывающих большие динамические нагрузки.

Маркировка говорит о химическом составе сплава и о его категории. В обозначении углеродистой стали обыкновенного качества есть буквы «ст». ГОСТ оговаривает семь условных номеров марок (0−6), также указывающихся в обозначении. Степень раскисления обозначают буквы «кп», «пс», «сп», проставленные в конце маркировки. Марки высококачественных и качественных сталей обозначаются цифрами, которые указывают на содержание в сплаве C в сотых долях процента.

О том, что сплав инструментальный, можно понять по букве «У» в начале маркировки. Цифра, следующая за этой буквой, говорит о содержании C в десятых долях процента. Литера «А», если таковая присутствует в обозначении инструментальной стали, указывает на улучшенные качественные характеристики сплава.

Стали с повышенным содержанием углерода могут быть менее склонными к образованию структур малой пластичности. При воздействии структурных и сварочных напряжений металл малой пластичности может разрушиться. Этому способствует наличие в нем и его сварочном шве диффузионного водорода. Для предупреждения появления холодных трещин применяются способы, позволяющие устранить факторы, способствующие появлению таких недостатков.

Разобраться в таком вопросе, как классификация углеродистых сталей, очень важно, так как это позволяет получить полное представление о характеристиках той или иной разновидности этого популярного материала. , как и любых других, не менее важна, и специалист должен уметь разбираться в ней, чтобы правильно выбрать сплав в соответствии с его свойствами и химическим составом.

Отличительные характеристики и основные категории

К углеродистым сталям, основу которых составляют железо и углерод, относят сплавы, содержащие минимум дополнительных примесей. Количественное содержание углерода является основанием для следующей классификации сталей:

  • низкоуглеродистые (содержание углерода в пределах 0,2%);
  • среднеуглеродистые (0,2–0,6%);
  • высокоуглеродистые (до 2%).

Кроме достойных технических характеристик, следует отметить доступную стоимость , что немаловажно для материала, широко применяемого для производства самых разнообразных изделий.

К наиболее значимым достоинствам углеродистых сталей различных марок можно отнести:

  • высокую пластичность;
  • хорошую обрабатываемость (вне зависимости от температуры нагрева металла);
  • отличную свариваемость;
  • сохранение высокой прочности даже при значительном нагреве (до 400°);
  • хорошую переносимость динамических нагрузок.

Есть у углеродистых сталей и недостатки, среди которых стоит выделить:

  • снижение пластичности сплава при увеличении в его составе содержания углерода;
  • ухудшение режущей способности и снижение твердости при нагреве до температур, превышающих 200°;
  • высокую склонность к образованию и развитию коррозионных процессов, что налагает дополнительные требования к изделиям из такой стали, на которые должно быть нанесено защитное покрытие;
  • слабые электротехнические характеристики;
  • склонность к тепловому расширению.

Отдельного внимания заслуживает классификация углеродистых сплавов по структуре. Основное влияние на превращения в них оказывает количественное содержание углерода. Так, стали, относящиеся к категории доэвтектоидных, имеют структуру, основу которой составляют зерна феррита и перлита. Содержание углерода в таких сплавах не превышает 0,8%. С увеличением количества углерода уменьшается количество феррита, а объем перлита, соответственно, увеличивается. Стали, в составе которых содержится 0,8% углерода, по данной классификации относят к эвтектоидным, основу их структуры преимущественно составляет перлит. При дальнейшем увеличении количества углерода начинает формироваться вторичный цементит. Стали с такой структурой относятся к заэвтектоидной группе.

Увеличение в составе стали количества углерода до 1% приводит к тому, что такие свойства металла, как прочность и твердость, значительно улучшаются, а предел текучести и пластичность, напротив, ухудшаются. Если количество углерода в стали будет превышать 1%, это может привести к тому, что в ее структуре будет формироваться грубая сетка из вторичного мартенсита, что самым негативным образом сказывается на прочности материала. Именно поэтому в сталях, относящихся к категории высокоуглеродистых, количество углерода, как правило, не превышает 1,3%.

На свойства углеродистых сталей серьезное влияние оказывают и примеси, содержащиеся в их составе. Элементами, которые положительно воздействуют на характеристики сплава (улучшают раскисление металла), являются кремний и марганец, а фосфор и сера – это примеси, ухудшающие его свойства. Фосфор при повышенном содержании в составе углеродистой стали приводит к тому, что изделия из нее покрываются трещинами и даже ломаются при воздействии низких температур. Такое явление носит название хладноломкости. Что характерно, стали с повышенным содержанием фосфора, если они находятся в нагретом состоянии, хорошо поддаются сварке и обработке при помощи ковки, штамповки и др.

В изделиях из тех углеродистых сталей, в составе которых в значительном количестве содержится сера, может возникать такое явление, как красноломкость. Суть этого феномена заключается в том, что металл при воздействии высокой температуры начинает плохо поддаваться обработке. Структура углеродистых сталей, в составе которых содержится значительное количество серы, представляет собой зерна с легкоплавкими образованиями на границах. Такие образования при повышении температуры начинают плавиться, что приводит к нарушению связи между зернами и, как следствие, к образованию многочисленных трещин в структуре металла. Между тем параметры сернистых углеродистых сплавов можно улучшить, если выполнить их микролегирование при помощи циркония, титана и бора.

Технологии производства

На сегодняшний день в металлургической промышленности используются три основных технологии . Их основные отличия состоят в типе используемого оборудования. Это:

  • плавильные печи конвертерного типа;
  • мартеновские установки;
  • плавильные печи, работающие на электричестве.

В конвертерных установках расплавке подвергаются все составляющие стального сплава: чугун и стальной лом. Кроме того, расплавленный металл в таких печах дополнительно обрабатывается при помощи технического кислорода. В тех случаях, когда примеси, присутствующие в расплавленном металле, необходимо перевести в шлак, в него добавляют обожженную известь.

Процесс получения углеродистой стали по данной технологии сопровождается активным окислением металла и его угаром, величина которого может доходить до 9% от общего объема сплава. К недостатку данного технологического процесса следует отнести и то, что он проходит с образованием значительного количества пыли, а это вызывает необходимость использования специальных пылеочистительных установок. Применение таких дополнительных устройств сказывается на себестоимости получаемой продукции. Однако все недостатки, которыми характеризуется этот технологический процесс, в полной мере компенсируются его высокой производительностью.

Выплавка в мартеновской печи – еще одна популярная технология, которую применяют для получения углеродистых сталей различных марок. В ту часть мартеновской печи, которая называется плавильной камерой, загружается все необходимое сырье (стальной лом, чугун и др.), которое подвергается нагреванию до температуры плавления. В камере происходят сложные физико-химические взаимодействия, в которых принимают участие расплавленные металл, шлак и газовая среда. В результате получается сплав с требуемыми характеристиками, который в жидком состоянии выводится через специальное отверстие в задней стенке печи.

Сталь, получаемая при выплавке в электрических печах, за счет использования принципиально другого источника нагревания не подвергается воздействию окислительной среды, что позволяет сделать ее более чистой. В различных марках углеродистой стали, полученной при выплавке в электрических печах, присутствует меньшее количество водорода. Этот элемент является основной причиной появления в структуре сплавов флокенов, значительно ухудшающих их характеристики.

Каким бы способом ни выплавлялся углеродистый сплав и к какой бы категории в классификации он ни относился, основным сырьем для его производства являются чугун и металлический лом.

Способы улучшения прочностных характеристик

Если свойства марок улучшают посредством ввода в их состав специальных добавок, то решение такой задачи по отношению к углеродистым сплавам осуществляется за счет выполнения термообработки. Одним из передовых методов последней является поверхностная плазменная закалка. В результате использования этой технологии в поверхностном слое металла формируется структура, состоящая из мартенсита, твердость которого составляет 9,5 ГПа (на некоторых участках она доходит до 11,5 ГПа).

Поверхностная плазменная закалка также приводит к тому, что в структуре металла формируется метастабильный остаточный аустенит, количество которого возрастает, если в составе стали увеличивается процентное содержание углерода. Данное структурное образование, которое может преобразоваться в мартенсит при выполнении обкатки изделия из углеродистой стали, значительно улучшает такую характеристику металла, как износостойкость.

Одним из эффективных способов, позволяющих значительно улучшить характеристики углеродистой стали, является химико-термическая обработка. Суть данной технологии заключается в том, что стальной сплав, нагретый до определенной температуры, подвергают химическому воздействию, что и позволяет значительно улучшить его характеристики. После такой обработки, которой могут быть подвергнуты углеродистые стали различных марок, повышаются твердость и износостойкость металла, а также улучшается его коррозионная устойчивость по отношению к влажным и кислым средам.

Другие параметры классификации

Еще одним параметром, по которому классифицируют углеродистые сплавы, является степень их очищения от вредных примесей. Лучшими механическими характеристиками (но и более высокой стоимостью) отличаются стали, в составе которых присутствует минимальное количество серы и фосфора. Данный параметр стал основанием для классификации углеродистых сталей, в соответствии с которой выделяют сплавы:

  • обыкновенного качества (В);
  • качественные (Б);
  • повышенного качества (А).

Стали первой категории (их химический состав не уточняется производителем) выбирают, основываясь только на их механических характеристиках. Такие стали отличаются минимальной стоимостью. Их не подвергают ни термообработке, ни обработке давлением. Для качественных сталей производитель оговаривает химический состав, а для сплавов повышенного качества – и механические свойства. Что важно, изделия из сплавов первых двух категорий (Б и В) можно подвергать термообработке и горячей пластической деформации.

Существует классификация углеродистых сплавов и по их основному назначению. Так, различают конструкционные стали, из которых производят детали различного назначения, и инструментальные, используемые в полном соответствии с их названием – для изготовления различного инструмента. Инструментальные сплавы, если сравнивать их с конструкционными, отличаются повышенной твердостью и прочностью.

В маркировке углеродистой стали можно встретить обозначения «сп», «пс» и «кп», которые указывают на степень ее раскисления. Это еще один параметр классификации таких сплавов.
Буквами «сп» в маркировке обозначаются спокойные сплавы, в составе которых может содержаться до 0,12% кремния. Они характеризуются хорошей ударной вязкостью даже при низких температурах и отличаются высокой однородностью структуры и химического состава. Есть у таких углеродистых сталей и минусы, наиболее значимые из которых заключаются в том, что поверхность изделий из них менее качественная, чем у кипящих сталей, а после выполнения сварочных работ характеристики деталей из них значительно ухудшаются.

Полуспокойные сплавы (обозначаются буквами «пс» в маркировке), в которых кремний может содержаться в пределах 0,07–0,12%, характеризуются равномерным распределением примесей в своем составе. Этим обеспечивается постоянство характеристик изделий из них.

В кипящих углеродистых сталях, содержащих не более 0,07% кремния, процесс раскисления полностью не завершен, что становится причиной неоднородности их структуры. Между тем их выделяет ряд достоинств, к наиболее значимым из которых следует отнести:

  • невысокую стоимость, что объясняется незначительным содержанием специальных добавок;
  • высокую пластичность;
  • хорошую свариваемость и обрабатываемость при помощи методов пластической деформации.

Как маркируются углеродистые стальные сплавы

Разобраться в принципах маркировки углеродистой стали так же несложно, как и в основаниях ее классификации: они мало чем отличаются от правил обозначения стальных сплавов других категорий. Для того чтобы расшифровать такую маркировку, не нужно даже заглядывать в специальные таблицы.

Буква «У», стоящая в самом начале обозначения марки сплава, указывает на то, что он относится к категории инструментальных. О том, в какую качественную группу входит углеродистая сталь, говорят буквы «А», «Б» и «В», проставляемые в самом конце маркировки. Количество углерода, содержащееся в сплаве, проставляется в самом начале его маркировки. При этом для сталей, обладающих повышенным качеством (группа «А»), количество данного элемента будет указано в сотых долях процента, а для сплавов групп «Б» и «В» – в десятых.

В маркировке отдельных углеродистых сталей можно встретить букву «Г», стоящую после цифр, указывающих на количественное содержание углерода. Такая буква свидетельствует о том, что в металле содержится повышенное количество такого элемента, как марганец. На то, какой степени раскисления соответствует углеродистая сталь, указывают обозначения «сп», «пс» и «кп».

Углеродистые сплавы благодаря своим характеристикам и невысокой стоимости активно используются для производства элементов строительных конструкций, деталей машин, инструментов и металлических изделий различного назначения.

2 , средняя оценка: 5,00 из 5)


    Железоуглеродистые сплавы - сталь и чугун. Процентное содержание углерода в стали

    Определение массовой доли углерода в стали и марки стали по ее структуре

    Возможность определения массовой доли углерода в стали по структуре, обусловливается тем обстоятельством, что структурные составляющие медленно охлажденной, т.е. находящейся в равновесном состоянии стали, содержат определенные и постоянные массовые доли углерода. При изменении доли углерода в такой стали в пределах данной структурной группы (доэвтектоидная, заэвтектоидная) изменяется только количественное соотношение структурных составляющих. Из этого вытекает, что определение массовой доли углерода может производиться только по равновесной структуре.

    Поскольку плотности структурных составляющих сталей близки, то соотношение их массовых долей можно заменить соотношением занимаемых ими площадей.

    В доэвтектоидных сталях массовая доля углерода определяется по

    где Fn – площадь поля зрения микроскопа, занимаемая перлитом, %; 0,8 – % С в перлите.

    Рассчитав массовую долю углерода заданной доэвтектоидной стали по формуле (3.1), можно по таблицам определить марку этой стали.

    Влияние примесей на свойства сталей

    В углеродистой стали кроме основных компонентов (железа и углерода) присутствует ряд примесей Мn, Si, S, P и др. Присутствие разных примесей объясняется соответствующими причинами. Мn и Si в десятых долях процента переходят в сталь в процессе ее раскисления; S и Р в сотых долях процента остаются в стали из-за трудности их полного удаления; Сr и Ni переходят в сталь из шихты, содержащей легированный металлический лом, и допускаются в количестве не более 0,3 % каждого. Таким образом, сталь фактически является многокомпонентным сплавом. Допустимые количества примесей в сталях регламентируются соответствующими стандартами. Примеси оказывают влияние на механические и технологические свойства стали. Так, например, Мп и Si повышают твердость и прочность, Р придает стали хладноломкость – хрупкость при нормальной и пониженных температурах, а S – горячеломкость (красноломкость) – хрупкость при температурах горячей обработки давлением. Поскольку в сталях допускаются небольшие количества примесей, то их влияние на свойства незначительно. Основным элементом, определяющим механические и технологические свойства стали, является углерод.

    Каждой марке углеродистой стали соответствуют регламентированные стандартами определенные пределы содержания углерода.

    Маркировка углеродистых сталей

    По назначению и качеству углеродистые стали классифицируются следующим образом:

    1. Стали конструкционные углеродистые обыкновенного качества содержат вредных примесей: серы до 0,05 %, а фосфора до 0,04 % (ГОСТ 380-94). Эти стали маркируются Ст0, Ст1кп, Ст1пс, Ст1сп и т.д. до Cт6 (табл. 3.1). Если после марки стоят буквы "кп" - это означает, что сталь кипящая, полностью нераскисленная (раскисляют только ферромарганцем). Если "сп" – сталь спокойная, получаемая полным раскисленнем (раскисляют ферромарганцем, ферросилицием и алюминием). Если "пс" – сталь полуспокойная промежуточного типа.

    Стали углеродистые обыкновенного качества широко применяются в

    строительстве. Из ряда марок изготавливают детали машиностроения. В судостроении применяются как корпусные, для малоответственных конструкций, деталей машин, механизмов и устройств судов и плавительных средств всех типов.

    2. Стали конструкционные углеродистые качественные (ГОСТ 1050-88).

    К сталям этой группы предъявляют более высокие требования относительно состава: меньшее содержание серы (менее 0,04 %) и фосфора (менее 0,035 %). Они маркируются двузначными цифрами, обозначающими среднюю массовую долю углерода в стали в сотых долях процента (табл. 3.2).

    Например, сталь 30 – углеродистая конструкционная качественная сталь со средней массовой долей углерода 0,3 %.

    Качественные конструкционные углеродистые стали широко применяются во всех отраслях машиностроения и в судостроении в частности.

    Низкоуглеродистые стали (08, 10, 15, 20, 25) обладают высокой пластичностью, но низкой прочностью. Стали 08, 10 используют для изготовления деталей холодной штамповкой и высадкой (трубки, колпачки). Стали 15, 20, 25 применяют для цементируемых и цианируемых деталей (втулки, валики, пальцы), работающих на износ и не испытывающих высоких нагрузок. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций.

    Среднеуглеродистые стали (30, 35, 40, 45, 50), обладающие после термической обработки хорошим комплексом механических свойств, применяются для изготовления деталей повышенной прочности (распределительных валов, шпинделей, штоков, плунжеров, осей, зубчатых колес).

    Высокоуглеродистые стали (55, 60) обладают более высокий прочностью, износостойкостью и упругими свойствами; применяются для деталей работающих в условиях трения при наличии высоких статических и вибрационных нагрузок. Из этих сталей изготавливают прокатные валки, шпиндели, диски сцепления, регулировочные шайбы и т.п.

    3.Стали углеродистые инструментальные качественные и высококачественные (ГОСТ 1435-90).

    Эти стали маркируются буквой У и следующей за ней цифрой, показывающей среднюю массовую долю углерода в десятых долях процента (табл. 3.3). Например, сталь У10 – инструментальная углеродистая качественная сталь со средней массовой долей углерода 1 %. Если в конце марки стоит буква "А", это означает, что сталь высококачественная, т.е. содержит меньше вредных примесей (серы менее 0,018 % и фосфора менее 0,025 %). Для режущего инструмента (фрезы, зенкеры, сверла, ножовки, напильники и т.п.) обычно применяют заэвтектоидные стали (У10, У11, У12, У13). Деревообрабатывающий инструмент, зубила, отвертки, топоры и тому подобное изготавливают из сталей У7 и У8.

    Табл. 3.1. Химический состав углеродистых конструкционных сталей

    обыкновенного качества по ГОСТ 380-94

    Марка стали

    Массовая доля элементов, %

    Табл. 3.3. Химический состав углеродистых инструментальных

    качественных и высококачественных сталей по ГОСТ 1435-90.

    Марки стали

    Массовая доля элементов, %

    studfiles.net

    Железоуглеродистые сплавы - сталь и чугун

    Наиболее широкое применение в современном машиностроении имеют железоуглеродистые сплавы - сталь и чугун.

    Сталь - это сплав железа с углеродом; содержание углерода в стали не превышает 2%.

    К сталям относятся:

      техническое железо,

      конструкционная и

      инструментальная сталь.

    Чугун - сплавы железа с углеродом, в которых содержание углерода превышает 2%. Среднее содержание углерода в чугуне 2,5-3,5%.

    Кроме железа и углерода, в сталях и чугунах присутствуют примеси:

      кремний и марганец в десятых долях процента (0,15- 0,60%)

      сера и фосфор в сотых долях процента (0,05-0,03%) каждого элемента.

    Сталь

    • проволоки,

    • таврового и уголкового железа,

      различного фасонного профиля,

      а также для многочисленных деталей в машиностроении: шестерни, оси, валы, шатуны, болты, молотки, кувалды и т.п.

    • зубила и др.

    Свойства стали зависят от содержания углерода. Чем больше углерода, тем сталь прочнее и тверже.

    Чугун

    Машиностроительный чугунприменяют для производства отливок всевозможных деталей машин.

    По составу и строению чугуны делятся на:

    Ковкий чугун

    Ковкий чугун получается в результате специальной обработки белого чугуна. В белом чугуне весь углерод находится в химически связанном состоянии с железом (Fe3C - цементит), что придает этому чугуну большую твердость и хрупкость и плохую обрабатываемость.

    Белый чугун

    В машиностроении белый чугун применяют для изготовления отливок, отжигаемых на так называемый ковкий чугун.

    При отжиге цементит разлагается па железо и свободный углерод, и отливки приобретают невысокую твердость и хорошую обрабатываемость.

    Серый чугун

    Наиболее широкое применение в технике имеет серый чугун, в котором большая часть углерода находится в свободном состоянии, в виде графита. Этому способствует высокое содержание кремния.

    Такой чугун обладает хорошими литейными качествами и применяется для производства чугунных отливок. Детали из этого чугуна получаются путем отливки в земляные или металлические формы (станины, шестерни, цилиндры, блоки и т.п.).

    Благодаря наличию свободного углерода (графита) серый чугун имеет небольшую твердость и хорошо обрабатывается резанием.

    www.conatem.ru

    2.2. Стали | Материаловед

    Для производства различных фасонных отливок в качестве конструкционного исходного материала, обладающего повышенными механическими свойствами, применяют стали конструкционные, инструментальные и с особыми физико–химическими свойствами (легированные).

    Отливки из углеродистых, конструкционных сталей, имеющие высокие прочностные свойства, преимущественно получают из следующих марок: сталь 15 Л; 20 Л; 30 Л; 40 Л; 50 Л; 55 Л.

    Конструкционные углеродистые стали

    Конструкционные углеродистые стали применяют в литейном производстве для изготовления литых деталей, несущих главным образом механические нагрузки (статические, динамические, вибрационные и др.).

    Широко применяемые в литейном производстве стали имеют следующий химический состав: 0,15-0,45% С, 0,5-1% Mn, 0,2-0,5% Si. Содержание серы и фосфора должно быть минимальным. Сталь по сравнению с чугуном обладает более высокими механическими свойствами и имеет большую величину усадки (около 2,5 %). Она имеет худшую жидкотекучесть и склонность к образованию внутренних напряжений и трещин. Большинство отливок из углеродистых сталей подвергают термической обработке, которую проводят для улучшения их микроструктуры, механических и эксплуатационных свойств.

    Конструкционные углеродистые стали разделяют на стали обыкновенного качества, стали качественные и стали высококачественные. Стали обыкновенного качества содержат повышенное количество серы (до 0,05-0,06 %) и фосфора (до 0,04-0,07 %). В качественных сталях максимальное содержание вредных примесей составляет не более 0,04 %. Кроме того, качественные стали имеют более узкие пределы содержания углерода (0,07-0,08%), в пределах одной марки. В сталях же обыкновенного качества он находится в пределах от 0,09 до 0,11 %. Качественная сталь менее загрязнена неметаллическими включениями и имеет меньшее содержание растворимых газов. Поэтому при примерно одинаковом содержании углерода качественные стали имеют более высокую пластичность и вязкость.

    По химическому составу стали подразделяют на углеродистые (низко- и среднеуглеродистые) и легированные, а по структуре - на феррито-перлитного и перлитного классов.

    Отливки из низкоуглеродистой стали марок сталь 15 Л…25 Л применяют в электромеханической и машиностроительной промышленности. Их подвергают цементации и закалке. Изготовление фасонных отливок из низкоуглеродистых сталей связано с рядом трудностей: высокой температурой их плавления, пониженной жидкотекучестью и образованием в отливке горячих трещин.

    Отливки из среднеуглеродистых сталей марок сталь 30 Л…45 Л применяют преимущественно в машиностроении при изготовлении фасонных деталей сложной формы. Такие отливки подвергают термической обработке, отжигу, нормализации и закалке с последующим отпуском. Среднеуглеродистые стали обладают хорошей жидкотекучестью, меньшей склонностью образования горячих трещин и имеют высокие механические свойства.

    Следует отметить, что в связи с высокой температурой плавления и температурой разливки, низкой жидкотекучестью и трудностью заливки форм, стали обыкновенного качества в качестве литейного сплава для изготовления фасонных отливок применяются чрезвычайно редко. Поэтому основным материалом при производстве фасонных стальных отливок являются низко- и среднеуглеродистые стали в зависимости от требуемых механических свойств литых деталей.

    Литейные марки качественных углеродистых сталей приведены в таблице 2.4.

    Таблица 2.4. Марки углеродистых качественных конструкционных сталей, применяемые для изготовления литых заготовок

    Марка стали Содержание основных элементов, %
    углерода марганца
    15 КП Л 0,12-0,19 0,25-0,50
    15 ПС Л 0,12-0,19 0,35-0,65
    20 КП Л 0,17-0,24 0,25-0,50
    20 ПС Л 0,17-0,24 0,35-0,65
    25 Л 0,22-0,30 0,50-0,80
    30 Л 0,27-0,35 0,50-0,80
    35 Л 0,32-0,40 0,50-0,80
    40 Л 0,37-0,45 0,50-0,80
    45 Л 0,42-0,50 0,50-0,80
    50 Л 0,52-0,60 0,50-0,80
    55 ПС Л 0,55-0,63 Не более 0,2
    60 Л 0,57-0,65 0,50-0,80

    Примечания:

  1. В указанных марках содержится не более кремния (Si) – 0,17-0,37%; хрома (Cr) – 0,25%; серы (S) и фосфора (Р) не более 0,04% (каждого).
  2. В обозначении марок углеродистых качественных сталей цифры показывают среднее содержание углерода в стали в сотых долях процента. Буква «Л» означает, что сталь литая, буквы «КП», «ПС» - степень раскисления стали; КП – кипящая; ПС – полуспокойная; маркировка без индекса - спокойная.

Среднеуглеродистые стали применяют в машиностроении предпочтительно для изготовления фасонных отливок сплошной формы. Отливки из сталей подвергают термической обработке: отжигу, нормализации и закалке с последующим отпуском.

Как правило, отливки, изготовленные из литейных сталей, обладают высоким временным сопротивлением (400-600 МПа), относительным удлинением (10-24%), ударной вязкостью и достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей – углерод.

Инструментальные углеродистые стали применяются для изготовления литого инструмента (режущий, мерительный, штамповочный и т.п.). Марки инструментальных углеродистых сталей приведены в таблице 2.5.

Таблица 2.5. Стали инструментальные углеродистые

В обозначениях марок углеродистых инструментальных сталей цифры показывают среднее процентное содержание углерода в десятых долях процента. Буквы, стоящие за цифрами, указывают: Г – на повышенное содержание марганца в стали; А – на принадлежность стали к группе высококачественных сталей, в которых содержится наименьшее количество вредных примесей (фосфора и серы соответственно не боле 0,018% и 0,025% каждого).

Легированные стали

Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т.д.). Например, марганец повышает износостойкость, хром – жаростойкость. Никель – коррозионную стойкость и т.д.

Легированные стали используют в энергомашиностроении, химической и нефтяной промышленности и металлургии и других областях. Из них изготовляют методом литья турбинные лопатки, клапаны гидропрессов, зубья ковшей экскаваторов и другие отливки.

Легирующие элементы обозначают русскими буквами:

Марки легированных сталей обозначают буквами и цифрами. Буквы обозначают присутствие в стали определенного легирующего элемента, цифры, стоящие за буквами, показывают содержание легирующих элементов в процентах. Если содержание элементов не превышает 1,5%, то цифра легирующего элемента не ставится. Содержание углерода в сталях указывается в начале марки легированной стали. Для конструкционных сталей первые цифры показывают среднее содержание углерода в сотых долях процента, для инструментальных (высокоуглеродистых) – в десятых долях процента. Буква «Л», стоящая в конце марки, указывает на то, что эта сталь литая. Пример записи и расшифровки одной из марок легированных жаропрочных сталей: 18Н12МЗТ Л, где Л – сталь литая, 0,18% углерода, 12% никеля, 3% молибдена, до 1,5% титана.

Наиболее высокими физико-механическим свойствами обладают отливки, изготовленные из высоколегированных сталей.

Стали высоколегированные со специальными свойствами подразделяются на следующие группы:

1) коррозионно-стойкие (нержавеющие), обладающие стойкостью против атмосферной коррозии: 25Х18 Л; 20Х13 Л; 10Х17 Н3С Л и др.;

2) кислотоупорные, обладающие сопротивляемостью агрессивным средам (кислотам): 15Х18 Н9Т Л; 5Х18Н11В Л и др.;

3) окалиностойкие (жаростойкие), обладающие стойкостью против окалинообразования (окисления при высоких температурах): 15Х9ЧС2 Л; 25Х23Н7С Л и др.;

4) жаропрочные, сохраняющие достаточно высокую прочность при высоких температурах: 15Х22 Н15 Л; 30×24Н12С Л; 15Х25Н19С2 Л и др.;

5) износостойкие с высокой сопротивляемостью износу при абразивном и ударном воздействиях в разных условиях: 110Г13Л; 15Х34 Л и др.

Легированные стали обладают плохими литейными свойствами и резко повышают себестоимость изготовления литой детали. Поэтому они рекомендуются к применению в исключительных случаях, когда невозможно применение конструкционных качественных углеродистых сталей.

xn--80aagiccszezsw.xn--p1ai

Максимальное содержание - углерод - Большая Энциклопедия Нефти и Газа, статья, страница 4

Максимальное содержание - углерод

Cтраница 4

Наименование марок легированных сталей состоит из обозначения элементов и следующих за ним цифр. Цифры, стоящие после букв, указывают среднее значение содержания легирующего элемента в процентах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед первым буквенным обозначением указывают среднее или максимальное содержание углерода в стали в сотых долях процента.  

Одним из наиболее эффективных и широко применяемых методов защиты от МКК является легирование стали сильными карбидообразующими элементами, такими, как титан и ниобий. Эти элементы связывают углерод в прочные карбиды, тем самым предотвращая образование карбидов хрома и обеспечивая достаточную концентрацию хрома в твердом растворе. Содержание титана принимают равным Ti 5 (С-002) %, ниобия Nb10 (С-002) %, где 0 02 % - максимальное содержание углерода, при котором сохраняется стойкость стали против МКК. Преимуществом ниобия перед титаном является более высокая устойчивость его карбидов к растворению при повышении температуры закалки и к выгоранию при сварке, однако ниобий придает сталям склонность к горячим трещинам при сварке.  

В марках нержавеющих высоколегированных сталей по ГОСТ 5632 - 72 химические элементы обозначаются следующими буквами: А - азот, В - вольфрам, Д - медь, М - молибден, Р - бор, Т - титан, Ю - алюминий, X - хром, Б - ниобий, Г - - марганец, Е - селен, Н - никель, С - кремний, Ф - ванадий, К - кобальт, Ц - цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых единицах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента.  

После этого в поглотители Реберга вносят (подтоком очищенного кислорода) по 1 50мл 0 02 jV раствора Ва (ОН) 2 и пропускают воздух еще в течение 15 мин и под током воздуха оттитровывают раствор барита 0 01 N раствором соляной кислоты. Отсутствие разницы между расходом этой кислоты в данном титровании и отдельно установленным соотношением между баритом и соляной кислотой указывает на чистоту установки; в противном случае необходимо продолжать очистку прибора. После окончания такой очистки под током кислорода при скорости 5 мл / мин в сухие поглотители Реберга вносят по 2 00 - 2 50 мл 0 02 N. Оптимальный объем воды для анализа определяется содержанием в ней суммарного углерода: исходя из ниже приведенного соотношения между 1 мл 0 01 N раствора НС1 и углеродом, крайние пределы содержания суммарного углерода в пробе воды составляют от 10 до 200 мкг С. При правильном проведении анализа даже при максимальном содержании углерода титр барита в третьем поглотителе изменяется мало.  

С помощью рис. 25.6 посмотрим, что происходит при охлаждении расплавов различного состава ниже эвтектической температуры 1130 С. Сплав, состав которого определяется на диаграмме точкой 1, при охлаждении затвердевает в эвтектической точке Е, образуя смесь цементита Fe3C и аустенита; последний представляет собой твердый раствор углерода в железе. Описанная смесь называется ледебуритом. Расплав, состав которого отвечает точке 2, при отвердевании образует кристаллы аустенита, а остающийся расплав обогащается углеродом до тех пор, пока не будет достигнута эвтектическая точка. После этого получается твердая фаза, содержащая аустенит и ледебурит. Таким образом, расплавы состава 1 и 2 в итоге дают смеси одинаковых твердых веществ, аустенита и цементита, но в различных пропорциях. Эта величина характеризует максимальное содержание углерода в его твердом растворе с железом, а также определяет верхний предел содержания углерода в обычных углеродистых сплавах. При наличии большего количества углерода сплавы железа называются чугуном. При охлаждении расплава с составом 3 сначала образуются аустенитные кристаллы, более бедные углеродом, чем расплав; расплав же, наоборот, обогащается углеродом. При охлаждении до температуры, соответствующей точке на кривой солидуса, которая отвечает составу исходного расплава, он кристаллизуется с образованием аустенита.  

В течение последних лет было выполнено достаточное количество работ по изучению фазовых диаграмм и процессов испарения высокоогнеупорных псевдометаллических карбидов элементов IV и V групп, на основе которых можно представить общий характер поведения этих материалов. Эти соединения (а также аналогичные нитриды, тройные и четвертные карбидонитриды, окси-карбиды и оксикарбонитриды) имеют очень высокую энергию связи. На основании электропроводности и магнитных свойств этих соединений установлено, что связи в них имеют металлический характер во всей кристаллической решетке. Составы образующихся фаз не определяются валентностями, как это имеет место в случае ионных соединений переходных металлов или в случае соединений типа адамантина, в которых преобладают ст-связи. В карбидах при высоких температурах обычно присутствуют три нестехиометрические фазы. Металл (а-фаза) при высоких температурах присоединяет 5 - 10 ат. Следующая фаза имеет идеальную гексагональную решетку с химической формулой МаС, а отклонения от стехиометрического состава при температурах значительно ниже эвтектической, по-видимому, очень незначительны. При приближении к эвтектической температуре минимальная концентрация углерода в фазе М2С быстро уменьшается, а максимальная концентрация углерода увеличивается лишь незначительно. В любом случае при очень высокой температуре фаза М2С неустойчива и изменяется по перитектической реакции с образованием расплава и у-фазы типа NaCl с большими отклонениями от стехиометрического состава. Фаза имеет широкий диапазон составов. Однако представляется, что во всех изученных системах максимальное содержание углерода в карбиде, находящемся в равновесии с графитом, остается меньше стехиометрического. Результаты, полученные различными исследователями, иногда не согласуются, а интерпретация результатов затрудняется легкостью внедрения в эти фазы кислорода и азота, а также сложностью определения малых примесей.  

Страницы:      1    2    3    4

, не содержащая легирующих компонентов. В зависимости от содержания углерода У. с. подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25-0,6% С) и высокоуглеродистую (более 0,6% С). Различают У. с. обыкновенного качества и качественную конструкционную. К 1-й группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во 2-ю входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм, калиброванная сталь и Серебрянка .

У. с. выплавляют в мартеновских, двухванных, дуговых печах и кислородных конвертерах. Для раскисления У. с. используют ферромарганец, ферросилиций, феррованадий, алюминий, титан и др.; по степени раскисления различают кипящую, полуспокойную и спокойную У. с. Для улучшения физико-химических и технологических свойств применяют микролегирование У. с. титаном, цирконием, бором, редкоземельными элементами. В результате микролегирования сталь приобретает мелкозернистую структуру, уменьшается степень зональной ликвации (См. Ликвация), снижаются загрязнённость стали неметаллическими включениями (См. Неметаллические включения) и склонность к образованию трещин при горячей пластической деформации, повышается Ударная вязкость при отрицательных температурах, что даёт возможность применять У. с. в различных климатических зонах (от - 40 до 60 °С). У. с. разливают на слитки (сверху, сифоном) и заготовки (на машинах непрерывного литья); масса слитков достигает 35 т. Кроме того, У. с. используется для получения стальных отливок. Литая У. с. отличается от деформируемой стали подобного состава несколько меньшими пластичностью и ударной вязкостью.

У. с. - наиболее распространённый вид чёрных металлов (См. Чёрные металлы); на её долю приходится (середина 70-х гг.) свыше 75% всей стальной продукции чёрной металлургии СССР.

Лит.: Смоляренко Д. А., Качество углеродистой стали, 2 изд., М., 1969; Качество слитка спокойной стали, М., 1973.

Д. А. Смоляренко.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Углеродистая сталь" в других словарях:

    Нелегированная конструкционная или инструментальная сталь, содержащая С (0,04 2%) и постоянные примеси (Mn, Si, S, P). Различают низко (до 0,25% С), средне (0,25 0,6% С) и высокоуглеродистую (св. 0,6% С) сталь … Большой Энциклопедический словарь

    УГЛЕРОДИСТАЯ СТАЛЬ - см … Большая политехническая энциклопедия

    - (Carbon steel) сплав железа с углеродом (до 2 %). В отличие от легированных (сложных специальных сталей) не содержит специальных примесей. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    углеродистая сталь - Все марки сталей, за исключением нержавеющих сталей. [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции EN carbon steel … Справочник технического переводчика

    углеродистая сталь - сталь, не содержащая специально введенных легирующих элементов (нелегированная сталь). Углеродистая сталь кроме основы Fe (97 99,5 %) и С (Энциклопедический словарь по металлургии

    Нелегированная конструкционная или инструментальная сталь, содержащая С (0,04 2%) и посторонние примеси (Mn, Si, S, Р). Различают низко (до 0,25% С), средне (0,25 0,6% С) и высокоуглеродистую (свыше 0,6% С) сталь. * * * УГЛЕРОДИСТАЯ СТАЛЬ… … Энциклопедический словарь

    углеродистая сталь - 3.15 углеродистая сталь (carbon steel): Сплав железа и углерода, содержащий до 0,8 % углерода и до 0,8 % марганца, а также остаточные количества других элементов, за исключением намеренно добавляемых в определенных количествах для раскисления… … Словарь-справочник терминов нормативно-технической документации

    Carbon steel Углеродистая сталь. Сталь, содержащая не более принимаемых за норму концентрации 1,65 % марганца, 0,60 % кремния и 0,60 % меди и только несущественное количество любых других элементов кроме углерода, кремния, марганца, меди, серы и… … Словарь металлургических терминов

    углеродистая сталь - anglinis plienas statusas T sritis chemija apibrėžtis Nelegiruotas plienas, kuriame be anglies yra gamybos metu patekusių Mn, Si, S ir P priemaišų. atitikmenys: angl. carbon steel; common steel; not alloyed steel rus. углеродистая сталь … Chemijos terminų aiškinamasis žodynas

    Углеродистая сталь - нелегированная сталь, содержащая, %: С 0,04 2 и постянные примеси (Мn до 1; Si до 0,4; S до0,07; Р до 0,09). Углеродистую сталь подразделяют: по содержанию на низкоуглеродистую (до0,25% С), среднеуглеродистую (0,25 0,6% С) и высокоуглеродистую… … Энциклопедический словарь по металлургии

Углеро́дистая сталь - нелегированная конструкционная или инструментальная сталь, содержащая менее 2, 14% углерода . Углеродистые стали классифицируют по структуре, способу производства и раскисления, по качеству. По структуре углеродистая сталь может быть доэвтектоидной (содержит до 0, 8% углерода, структура состоит из феррита и перлита), эвтектоидной (содержит около 0, 8% углерода, структура состоит только из перлита), заэвтектоидной, (содержит 0, 8-2, 14% углерода, структура состоит из зерен перлита, окаймленных сеткой цементита). По способу производства различают углеродистые стали, выплавленные в электропечах, мартеновских печах и кислородно-конвертерным способом. По способу раскисления различают кипящие, полуспокойные, спокойные стали. По назначению углеродистые стали делятся на конструкционные стали и инструментальные стали ; существует также группа углеродистых сталей специального назначения. По содержанию углерода углеродистые стали подразделяются на низкоуглеродистые, с содержанием углерода до 0, 25 %; среднеуглеродистые, с содержанием углерода в 0, 3-0, 6%; высокоуглеродистые, с содержанием углерода выше 0, 6%. Различают также обыкновенные углеродистые стали и качественные углеродистые стали.

Содержание углерода в стали определяет ее структуру и свойства, так как с увеличением концентрации углерода в стали в ее структуре увеличивается количество цементита. Структура стали с содержанием углерода менее 0, 8 % состоит из феррита и перлита, при более высоком содержании углерода в структуре стали, кроме перлита, появляется структурно свободный вторичный цементит. Сталь со структурой феррита достаточно пластичная, но имеет низкую прочность; сталь со структурой цементита хрупкая, но имеет высокую твердость. С увеличением содержания углерода (до 0, 8-1, 0 %) увеличивается твердость и прочность нелегированных сталей, но уменьшается их вязкость и пластичность. Содержание углерода влияет на такие технологические свойства стали, как свариваемость, обрабатываемость давлением и резанием. Низкоуглеродистые стали используются для изготовления малонагруженных деталей и конструкций, среднеуглеродистые стали - основной конструкционный материал в общем и транспортном машиностроении, высокоуглеродистые стали используются для изготовления деталей с высокой износостойкостью, а также для изготовления измерительного, режущего, ударно-штампового инструмента.

На свойства стали влияет содержание постоянных (марганец, кремний, сера, фосфор) и скрытых (кислород, азот, водород) примесей. Полезными примесями являются марганец и кремний, которые вводят в сталь в процессе выплавки для раскисления. Вредными примесями в углеродистой стали являются сера и фосфор. Для улучшения физико-химических и технологических свойств применяют микролегирование углеродистой стали титаном, цирконием, бором, редкоземельными элементами.

Характерной чертой кипящей стали является незавершенный процесс ее раскисления. Эта сталь имеет повышенную пластичность, хорошо штампуется и сваривается. Она более дешевая, так как при ее выплавке расходуется минимальное количество специальных добавок и обеспечивается максимальный выход годного продукта. Недостатком кипящей стали является развитая ликвация, в результате которой прокат из ее неоднороден по структуре и механическим свойствам.

Спокойная сталь раскислена ферромарганцем , ферросилицием , алюминием и более однородна по составу. Остаточный алюминий снижает склонность к росту зерна, поэтому прочность и хладостойкость проката из спокойной и мелкозернистой стали выше, чем у проката из кипящей стали. Полуспокойная сталь характерна промежуточной степенью раскисления. В отличие от кипящей стали ее перед разливкой обрабатывают небольшим количеством раскислителей. По свойствам она занимает промежуточное положение между кипящей и спокойной сталями.

В углеродистых сталях обыкновенного качества допускается более высокое содержание вредных примесей, чем в качественных углеродистых сталях. Их выплавляют в крупных мартеновских печах и кислородных конвертерах, обозначают буквами Ст и цифрами от 0 до 6. Цифры указывают условный номер марки стали в зависимости от ее химического состава. Буквы кп, пс, сп в конце марки указывают на способ раскисления: кп - кипящая, пс - полуспокойная, сп - спокойная. К углеродистым сталям обыкновенного качества относятся горячекатаная стать (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная сталь (тонколистовая).

К качественным углеродистым сталям предъявляются жесткие требования по содержанию вредных примесей (содержание серы не должно превышать 0, 04%, фосфора - 0, 035 %). Их выплавляют в электропечах, кислородных конвертерах, мартеновских печах. Качественные углеродистые стали маркируются двузначными цифрами (05, 10, 15), указывающими среднее содержание углерода в сотых долях процента. Буква А в конце марки указывает на улучшенное металлургическое качество. При обозначении кипящей или полуспокойной стали указывается степень раскисленности: кп, пс. У спокойной стали степень раскисленности не указывается.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта