Главная » Стены » Моделирование по схеме марковских случайных процессов. Элементы теории массового обслуживания Моделирование неординарных потоков событий

Моделирование по схеме марковских случайных процессов. Элементы теории массового обслуживания Моделирование неординарных потоков событий

Транскрипт

1 АН Моисеев АА Назаров Асимптотический анализ высокоинтенсивного полумарковского потока 9 УДК 5987 АН Моисеев АА Назаров Асимптотический анализ высокоинтенсивного полумарковского потока событий Представлено исследование высокоинтенсивного полумарковского потока событий Показано что для рассматриваемого потока распределение вероятностей числа событий наступивших за фиксированный интервал времени при условии неограниченного роста интенсивности потока может быть аппроксимировано нормальным распределением В работе получены параметры этого распределения Ключевые слова: высокоинтенсивный поток событий полумарковский поток асимптотический анализ Одним из базовых элементов систем и сетей массового обслуживания является входящий поток заявок Современные телекоммуникационные сети и системы распределенной обработки информации предполагают высокую пропускную способность каналов передачи информации Таким образом в этих системах количество пакетов данных поступающих на обработку в единицу времени очень высоко В терминах теории массового обслуживания в таких случаях говорят о высокой интенсивности входящего потока В частности в работе модель высокоинтенсивного потока применяется для моделирования потока входящих сообщений многофазной системы распределенной обработки данных В работах были изучены свойства высокоинтенсивных рекуррентных MMPP- и MAPпотоков В настоящей же работе представлен анализ свойств высокоинтенсивного полумарковского (Semi-Markovian или SM-) потока как наиболее общей модели потоков событий Математическая модель Рассмотрим полумарковский поток однородных событий заданный следующим образом Пусть {ξ n τ n } стационарный двумерный марковский процесс с дискретным временем Здесь ξ n дискретная компонента принимающая значения от до K τ n непрерывная компонента принимающая неотрицательные значения Будем полагать что эволюция процесса определяется элементами так называемой полумарковской матрицы A (x) = { Ak ν } k ν= следующим K образом: x Akν (x) = P ξ n+ =ν τ n+ < ξ n = k N Здесь N некоторая большая величина которая введена искусственно чтобы явным образом подчеркнуть малость величин τ n В теоретических исследованиях будем полагать N и таким образом τ n На практике полученные результаты можно использовать для аппроксимации соответствующих величин при достаточно больших значениях N (в условии высокой интенсивности потока) Пусть в момент времени t = произошло изменение состояния процесса {ξ n τ n } Последовательность моментов времени t n определяемая рекуррентным выражением tn+ = tn+τ n+ для n = называется полумарковским потоком случайных событий определяемым полумарковской матрицей A(x) Процесс ξ n =ξ(t n) называют вложенной в полумарковский поток цепью Маркова Поскольку средняя длина интервалов τ n обратно пропорциональна N то при N интенсивность наступления событий в таком потоке будет неограниченно расти Такой поток событий будем называть высокоинтенсивным полумарковским или HISM-потоком (от High-Intensive Semi- Markovian) Ставится задача нахождения числа событий m(t) наступивших в этом потоке в течение интервала времени (t) Вывод уравнений Колмогорова Пусть z(t) длина интервала времени от момента t до момента наступления следующего события в потоке; k(t) случайный процесс значения которого на каждом из интервалов = () Отсюда получаем матричное дифференциальное уравнение относительно функции R(z): R (z) = R ()[ I A (z) ] (3) граничное условие для которого при z имеет вид R () = λr (4) где λ некоторый коэффициент вектор-строка r есть стационарное распределение состояний вложенной цепи Маркова Этот вектор является решением уравнения Колмогорова r= r P где P= lim A (z) есть стохастическая матрица определяющая вероятности переходов вложенной цепи z Маркова Таким образом решение уравнения (3) имеет вид z R() z = R ()[ I A () x ] dx (5) Пусть R= R () есть стационарное распределение значений полумарковского процесса k(t) тогда при z из (5) получаем R= R ()[ I A(x) ] dx=λ r[ I A(x) ] dx=λr [ P A(x) ] dx=λra (6) где A матрица с элементами Akν = [ Pkν Akν(x) ] dx Умножая левую и правую части равенства (6) на единичный вектор-столбец E получим RE = =λrae откуда находим значение коэффициента λ: λ= (7) rae Доклады ТУСУРа 3 (9) сентябрь 3

3 АН Моисеев АА Назаров Асимптотический анализ высокоинтенсивного полумарковского потока jum Введем обозначение Hkuzt () = e Pkmzt () где j = мнимая единица а u некоторая переменная Умножая () на e jum и суммируя по m от до получаем m= Hkuzt () Hkuzt () Hku (t) K ju Hku (t) = + e Aν k (z) N ν= С учетом обозначения в виде вектор-строки H(u z t) = {H(u z t) H(K u z t)} данное уравнение примет вид H(uzt) H(uzt) H(u t) ju = + e A(z) I (8) N Дифференциальное матричное уравнение (8) будем решать асимптотически методом в условии неограниченно растущей интенсивности λn рассматриваемого полумарковского потока те при N Асимптотика первого порядка Введем обозначения N =ε u= ε w H(uzt) = F (wzt ε) Из (8) получим F(wzt ε) F(wzt ε) F(w t ε) jwε ε = + e A(z) I (9) Теорема Асимптотическое решение F(wzt) = lim F (wzt ε) уравнения (9) имеет вид ε () () jw λ F wzt = R ze t () где R(z) определяется выражением (5) Доказательство Выполним в (9) предельный переход ε получим уравнение F(wzt) F(w t) = + [ A(z) I ] которое имеет вид аналогичный () Следовательно функцию F (w z t) можно представить в виде F(wzt) = R (z) Φ(wt) () где Φ (w t) некоторая скалярная функция Выполним в (9) предельный переход z и просуммируем все компоненты этого уравнения (для этого умножим справа обе его части на единичный вектор-столбец E) Получим F(w t ε) F(w t ε) ε E= e P I E Подставим сюда выражение () воспользуемся разложением e = + jε w+ O(ε) поделим обе части на ε и произведем предельный переход ε: Φ(wt) RE = jwr () PE Φ(wt) откуда с учетом (4) получаем дифференциальное уравнение относительно функции Φ (w t): Φ(wt) = jwλφ (wt) Решая это уравнение при начальном условии Φ (w) = получаем решение jwλt Φ (wt) = e Подставим это выражение в () получим () Теорема доказана ju Nt Асимптотика второго порядка Выполним в (8) замену H(uzt) = H (uzte) λ: H(uzt) H(uzt) H(u t) ju + juλ H(u z t) = + e A(z) I () N Введем обозначения N =ε u= ε w H(uzt) = F (wzt ε) (3) Доклады ТУСУРа 3 (9) сентябрь 3

4 УПРАВЛЕНИЕ ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА Тогда () перепишется в виде F(wzt ε) F(wzt ε) F(w t ε) ε + λf (wzt ε) = + e A(z) I (4) Теорема Асимптотическое решение F(wzt) = lim F (wzt ε) уравнения (4) имеет вид ε (jw) F (wzt) = R (z)exp (λ+κ) t (5) где R(z) определяется выражением (5) κ= fe (6) вектор-строка f удовлетворяет системе линейных алгебраических уравнений f I P =λ rp R λ a (7) f AE= a = rae A = x da (x) Доказательство Выполним в (4) предельный переход ε получим уравнение F(wzt) F(w t) = + [ A(z) I ] которое имеет вид аналогичный () Следовательно функцию F (w z t) можно представить в виде F(wzt) = R (z) Φ(wt) (8) где Φ (w t) некоторая скалярная функция Решение уравнения (4) будем искать в виде разложения F(wzt ε) =Φ (wt) R(z) + jε wf (z) + O(ε) (9) где f(z) некоторая вектор-функция (строка) Подставляя это выражение в (4) и применяя разложение e = + jε w+ O(ε) после некоторых преобразований получим { } λφ (wt) R() z=φ (wt) R() z+ f () z+ R() A() z I + R() A() z+ f () A() z I+ A () z + O(ε) Учитывая (3) (4) поделив обе части на jεw и сокращая Φ (w t) получаем λ R(z) = f (z) +λ ra(z) + f ()[ A(z) I ] + O(ε) Отсюда при ε получаем дифференциальное уравнение относительно неизвестной векторфункции f(z) f (z) = f ()[ I A(z) ] λ[ ra(z) R (z) ] интегрируя которое при начальном условии f() = получаем выражение z f(z) = { f ()[ I A(x) ] λ[ ra(x) R (x) ]} dx () Будем искать f(z) в классе функций удовлетворяющих условию lim { f ()[ I A(x) ] λ[ ra(x) R (x) ]} = x Отсюда получаем f ()[ I P] λ[ rp R ] = () Вычитая левую часть этого равенства из подынтегрального выражения () с учетом (6) получаем f() = f () A+λrA λ [ R R (x) ] dx () Можно показать что [ R R (x) ] dx= λ ra где A = x da (x) С учетом этого умножая обе части () справа на единичный вектор E получим Доклады ТУСУРа 3 (9) сентябрь 3

5 АН Моисеев АА Назаров Асимптотический анализ высокоинтенсивного полумарковского потока 3 λ a [ f () A f()] E = (3) где a = rae Полагая что f() E = и обозначая f = f () из () и (3) получаем систему уравнений (7) Выполним в (4) предельный переход z и домножим обе части уравнения на E справа получим F(w t ε) F(w t ε) jw (w t) jw jw (w t) ε ε e F ε ε E+ ε λf ε E= P I E= E (e) () 3 Подставим сюда (9) и применим разложение e = + jε w+ + O(ε) получаем Φ(wt) (jεw) 3 ε RE+ λφ (wt) RE =Φ (wt)[ R () + f ()] E jw ε + + O(ε) Приводя подобные сокращая на ε используя обозначение (6) и переходя к пределу при ε получаем следующее дифференциальное уравнение относительно неизвестной функции Φ (w t): Φ(wt) (jw) = Φ(wt) (λ+κ) (jw) решая которое при начальном условии Φ (w) = получаем Φ (wt) = exp (λ+κ) t Подставляя это выражение в (8) получаем (5) Теорема доказана Аппроксимация распределения числа событий наступивших в HISM-потоке Выполняя в (5) замены обратные к (3) и возвращаясь к функции H(u z t) получаем (ju) H(u z t) R (z)exp juλ Nt + (λ+κ) Nt Таким образом характеристическая функция числа событий наступивших в высокоинтенсивном полумарковском потоке в течение времени t удовлетворяет соотношению (ju) hut () = H(u t) E exp juλ Nt+ (λ+κ) Nt То есть при достаточно больших значениях N распределение числа событий наступивших в HISM-потоке за время t может быть аппроксимировано нормальным распределением с математическим ожиданием λnt и дисперсией (λ + κ)nt где λ и κ определяются выражениями (7) и (6) Численные результаты В качестве примера для численных расчетов рассмотрим задачу моделирования событий в высокоинтенсивном полумарковском потоке заданном полумарковской матрицей A(x) третьего порядка записанной в форме A(x) = P * G(x) где P стохастическая матрица; G(x) матрица составленная из некоторых функций распределения; операция * адамарово произведение матриц Будем рассматривать пример когда элементы матрицы G(x) соответствуют функциям гамма-распределения с параметрами формы α kν и масштаба β kν k ν = 3 которые представим в виде матриц α и β соответственно Выберем следующие конкретные значения параметров: P = 3 5 α = 5 4 β = В результате расчетов получили следующие значения параметров: λ 99; κ 96 Для данной задачи было выполнено имитационное моделирование потока при значениях N = 3 и построены эмпирические распределения числа событий в интервалах длины t = Ряды распределений эмпирических данных и соответствующих аппроксимаций для N = и N = представлены графически на рис (для остальных значений N графики практически совпадают и на рисунке становятся неразличимы) Доклады ТУСУРа 3 (9) сентябрь 3

6 4 4 УПРАВЛЕНИЕ ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА 5 8 N = N = Рис Сравнение полигона относительных частот эмпирического распределения () и аппроксимирующего ряда распределения () Для оценки точности аппроксимации распределения будем использовать расстояние Колмогорова Dq = sup Fq(x) F(x) Здесь F q (x) эмпирическая функция распределения F(x) функция x распределения нормальной случайной величины с найденными выше характеристиками В таблице представлены Зависимость качества аппроксимации от величины N N δ относительные погрешности вычисления математического a δ D D q 8% 6% 464 ожидания δ a и дисперсии δ D а также расстояние Колмогорова D q для рассмотренных случаев 9% 7% % 5% На рис представлен график демонстрирующий % 4% 44 убывание расстояния Колмогорова между эмпирическим и 8% % аналитическим (нормальным) распределениями с ростом значения N D q Можно заметить что уже при 5 N > 3 достигается достаточно высокое качество гауссовской аппроксимации числа событий в рассмотренном высокоинтенсивном полумар- 4 ковском потоке (расстояние Колмогорова не превышает) 3 Рис Изменение расстояния Колмогорова D q в зависимости от интенсивности потока (логарифмическая шкала по N) N Заключение В работе представлено исследование высокоинтенсивного полумарковского потока событий Показано что в условии неограниченного роста его интенсивности распределение числа событий наступивших в данном потоке в течение интервала времени фиксированной длины может быть аппроксимировано нормальным распределением В работе получены параметры этого распределения Рассмотренные числовые примеры демонстрируют применимость полученных асимптотических результатов для HISM-потоков событий Аналогичные результаты были получены ранее и для других типов высокоинтенсивных потоков: рекуррентного MMPP MAP Доклады ТУСУРа 3 (9) сентябрь 3

7 АН Моисеев АА Назаров Асимптотический анализ высокоинтенсивного полумарковского потока 5 Литература Гнеденко БВ Введение в теорию массового обслуживания / БВ Гнеденко ИН Коваленко 4-е изд испр М: Изд-во ЛКИ 7 4 с Грачев ВВ Многофазная модель массового обслуживания системы распределенной обработки данных / ВВ Грачев АН Моисеев АА Назаров ВЗ Ямпольский // Доклады ТУСУРа (6) ч С Moiseev A Investigation of High Intensive General Flow / A Moiseev A Nazarov // Proc of the IV International Conference «Problems of Cybernetics and Informatics» (PCI) Baku: IEEE P Moiseev A Investigation of the High Intensive Markov-Modulated Poisson Process / A Moiseev A Nazarov // Proc Of The International Conference On Application Of Information And Communication Technology And Statistics In Economy And Education (ICAICTSEE-) Sofia: University Of National And World Economy P Моисеев АН Исследование высокоинтенсивного MAP-потока / АН Моисеев АА Назаров // Изв Том политехн ун-та 3 Т 3 С Королюк ВС Стохастические модели систем Киев: Наук думка с 7 Назаров АА Теория вероятностей и случайных процессов: учеб пособие / АА Назаров АФ Терпугов -е изд испр Томск: Изд-во НТЛ 4 с 8 Назаров АА Метод асимптотического анализа в теории массового обслуживания / АА Назаров СП Моисеева Томск: Изд-во НТЛ 6 с 9 Корн Г Справочник по математике для научных работников и инженеров / Г Корн Т Корн М: Наука с Рыков ВВ Математическая статистика и планирование эксперимента: учеб пособие / ВВ Рыков ВЮ Иткин М: МАКС Пресс 38 с Моисеев Александр Николаевич Канд техн наук доцент каф программной инженерии Томского государственного университета (ТГУ) Тел: 8 (38-) Эл почта: Назаров Анатолий Андреевич Д-р техн наук профессор зав каф теории вероятностей и математической статистики ТГУ Тел: 8 (38-) Эл почта: Moiseev AN Nazarov AA Asymptotic analysis of the high-intensive semi-markovian arrival process Investigation of the high-intensive semi-markovian arrival process is presented in the paper It is shown that a distribution of the number of arrivals in the process during some period under asymptotic condition of an infinite growth of the process rate can be approximated by normal distribution The characteristics of the approximation are obtained as well The analytical results are supported by numeric examples Keywords: high-intensive arrival process semi-markovian process asymptotic analysis Доклады ТУСУРа 3 (9) сентябрь 3


СПИСОК ЛИТЕРАТУРЫ. Баласанян С.Ш. Стратифицированная модель для оценки и анализа эффективности функционирования сложных технологических систем со многими состояниями // Известия Томского политехнического

АСИМПТОТИЧЕСКИЙ АНАЛИЗ РАЗОМКНУТОЙ НЕМАРКОВСКОЙ СЕТИ МАССОВОГО ОБСЛУЖИВАНИЯ HIMMPP (GI) K А. Назаров, А. Моисеев Томский государственный университет Томск, Россия [email protected] В работе представлено

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2008 Управление вычислительная техника и информатика 3(4) УДК 6239; 592 СВ Лопухова ИССЛЕДОВАНИЕ ММР-ПОТОКА АСИМПТОТИЧЕСКИМ МЕТОДОМ -го ПОРЯДКА В работе рассматривается

С.А. Матвеев, А.Н. Моисеев, А.А. Назаров. Применение метода начальных моментов 9 УДК 59.87 С.А. Матвеев, А.Н. Моисеев, А.А. Назаров Применение метода начальных моментов для исследования многофазной системы

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 7 Управление вычислительная техника и информатика УДК 5987 ТА Карлыханова МЕТОД ПРОСЕЯННОГО ПОТОКА ДЛЯ ИССЛЕДОВАНИЯ СИСТЕМЫ GI/GI/ Для системы массового обслуживания

УДК 6.39.; 59. С.В. Лопухова А.А. Назаров ИССЛЕДОВАНИЕ МАР-ПОТОКА МЕТОДОМ АСИМПТОТИЧЕСКОГО АНАЛИЗА N -го ПОРЯДКА Рассматривается МАР-поток. Выполнено исследование данного потока методом асимптотического

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 8 Управление вычислительная техника и информатика 4(5) МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УДК 59.87 В.А. Вавилов А.А. Назаров МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕУСТОЙЧИВЫХ

Филиал Кемеровского государственного университета в г. Анжеро-Судженске Национальный исследовательский Томский государственный университет Кемеровский государственный университет Институт проблем управления

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА Управление вычислительная техника и информатика 3() УДК 59.87 И.А. Ивановская С.П. Моисеева ИССЛЕДОВАНИЕ МОДЕЛИ ПАРАЛЛЕЛЬНОГО ОБСЛУЖИВАНИЯ КРАТНЫХ ЗАЯВОК

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2011 Управление, вычислительная техника и информатика 3(16) ОБРАБОТКА ИНФОРМАЦИИ УДК 519.872 И.Л. Лапатин, А.А. Назаров ХАРАКТЕРИСТИКИ МАРКОВСКИХ СИСТЕМ МАССОВОГО

А.А. Назаров И.А. Семенова. Сравнение асимптотических и допредельных характеристик 187 УДК 4.94:519.872 А.А. Назаров И.А. Семенова Сравнение асимптотических и допредельных характеристик системы МАР/М/

Филиал Кемеровского государственного университета в г Анжеро-Судженске Национальный исследовательский Томский государственный университет Кемеровский государственный университет Институт проблем управления

Статистическая радиофизика и теория информации Лекция 7 8.Марковские цепи с непрерывным временем Марковские цепи с непрерывным временем представляют собой марковский случайный процесс X t, состоящий из

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 9 Управление вычислительная техника и информатика (7) МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УДК 5987 ВА Вавилов МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕУСТОЙЧИВЫХ СЕТЕЙ СЛУЧАЙНОГО

ГЛАВА 5. МАРКОВСКИЕ ПРОЦЕССЫ С НЕПРЕРЫВНЫМ ВРЕМЕНЕМ И ДИСКРЕТНЫМ МНОЖЕСТВОМ СОСТОЯНИЙ В результате изучения данной главы студенты должны: знать определения и свойства Марковских процессов с непрерывным

На правах рукописи Задиранова Любовь Александровна ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ПОТОКОВ В БЕСКОНЕЧНОЛИНЕЙНЫХ СМО С ПОВТОРНЫМ ОБСЛУЖИВАНИЕМ ТРЕБОВАНИЙ 05.13.18 Математическое моделирование, численные

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 7 Управление вычислительная техника и информатика УДК 59 НВ Степанова АФ Терпугов УПРАВЛЕНИЕ ЦЕНОЙ ПРИ ПРОДАЖЕ СКОРОПОРТЯЩЕЙСЯ ПРОДУКЦИИ Рассматривается управление

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА Управление, вычислительная техника и информатика () УДК 59.865 К.И. Лившиц, Я.С. Бублик ВЕРОЯТНОСТЬ РАЗОРЕНИЯ СТРАХОВОЙ КОМПАНИИ ПРИ ДВАЖДЫ СТОХАСТИЧЕСКОМ

УДК 6-5 Спектральные характеристики линейных функционалов и их приложения к анализу и синтезу стохастических систем управления К.А. Рыбаков В статье вводится понятие спектральных характеристик линейных

На правах рукописи Лапатин Иван Леонидович ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ВЫХОДЯЩИХ ПОТОКОВ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ С НЕОГРАНИЧЕННЫМ ЧИСЛОМ ПРИБОРОВ 05.13.18 Математическое моделирование, численные

Оглавление Глава Случайные процессы Простая однородная цепь Маркова Уравнение Маркова Простая однородная цепь Маркова 4 Свойства матрицы перехода 5 Численный эксперимент: стабилизация распределения вероятностей

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ГЕОФИЗИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК МАРЧУКОВСКИЕ НАУЧНЫЕ ЧТЕНИЯ 017 5 июня 14 июля 017 года Труды Редакционная коллегия академик

ИССЛЕДОВАНИЕ RQ-СИСТЕМЫ M GI 1 МЕТОДОМ АСИМПТОТИЧЕСКОГО АНАЛИЗА В УСЛОВИИ БОЛЬШОЙ ЗАГРУЗКИ Е. Моисеева, А. Назаров Томский государственный университет Томск, Россия [email protected] В работе рассмотрена

УДК 6-5:59 НС Демин СВ Рожкова ОВ Рожкова ФИЛЬТРАЦИЯ В ДИНАМИЧЕСКИХ СИСТЕМАХ ПО НЕПРЕРЫВНО-ДИСКРЕТНЫМ НАБЛЮДЕНИЯМ С ПАМЯТЬЮ ПРИ НАЛИЧИИ АНОМАЛЬНЫХ ПОМЕХ II НЕПРЕРЫВНО-ДИСКРЕТНЫЕ НАБЛЮДЕНИЯ В данной работе

Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Український математичний вiсник Том 5 (28), 3, 293 34 О краевых задачах для обыкновенного дифференциального оператора с матричными коэффициентами Анна В Агибалова (Представлена М М Маламудом) Аннотация

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 2. Статистики первого типа. Точеченые Санкт-Петербург,

Управление вычислительная техника и информатика УДК 6-5:59 ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ДИСКРЕТНОГО КАНАЛА НАБЛЮДЕНИЯ С ПАМЯТЬЮ В ЗАДАЧЕ ЭКСТРАПОЛЯЦИИ НС Дёмин ОВ Рожкова* Томский государственный университет

Статистическая радиофизика и теория информации Лекция 6 7. Марковские* случайные процессы и марковские цепи. *Марков Андрей Андреевич (род. 1890) русский математик, академик Марковский случайный процесс

Сибирский математический журнал Июль август, 2003 Том 44, 4 УДК 51921+5192195 О КОМПОНЕНТАХ ФАКТОРИЗАЦИОННОГО ПРЕДСТАВЛЕНИЯ ДЛЯ ВРЕМЕНИ ПРЕБЫВАНИЯ ПОЛУНЕПРЕРЫВНЫХ СЛУЧАЙНЫХ БЛУЖДАНИЙ В ПОЛОСЕ В С Лугавов

На правах рукописи Горбатенко Анна Евгеньевна ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ С КОРРЕЛИРОВАННЫМИ ПОТОКАМИ В СПЕЦИАЛЬНЫХ ПРЕДЕЛЬНЫХ УСЛОВИЯХ 05.13.18 Математическое моделирование, численные методы

Управление вычислительная техника и информатика УДК 59. ИНФОРМАЦИОННЫЙ АСПЕКТ В СОВМЕСТНОЙ ЗАДАЧЕ НЕПРЕРЫВНО-ДИСКРЕТНОЙ ФИЛЬТРАЦИИ И ИНТЕРПОЛЯЦИИ. АНАЛИЗ С.В. Рожкова О.В. Рожкова Томский политехнический

Сибирский математический журнал Июль август, 2005. Том 46, 4 УДК 519.21 О ФАКТОРИЗАЦИОННЫХ ПРЕДСТАВЛЕНИЯХ В ГРАНИЧНЫХ ЗАДАЧАХ ДЛЯ СЛУЧАЙНЫХ БЛУЖДАНИЙ, ЗАДАННЫХ НА ЦЕПИ МАРКОВА В. И. Лотов, Н. Г. Орлова

Лекция 3 Устойчивость равновесия и движения системы При рассмотрении установившихся движений уравнения возмущенного движения запишем в виде d dt A Y где вектор-столбец квадратная матрица постоянных коэффициентов

Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Моделирование систем с использованием Марковских случайных процессов Основные понятия Марковских процессов Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной величиной.

1. КОНЕЧНЫЕ ОДНОРОДНЫЕ ЦЕПИ МАРКОВА Рассмотрим последовательность случайных величин ξ n, n 0, 1,..., каждая из коорых распределена дискретно и принимает значения из одного и того же множества {x 1,...,

Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Sin cos R Z cos ImZ cos sin sin Найденные таким образом решения образуют фундаментальную систему решений и следовательно общее решение системы имеет вид или подробнее sin cos cos sin cos cos cos sin sin

Структурная надежность. Теория и практика Каштанов В.А. УПРАВЛЕНИЕ СТРУКТУРОЙ В МОДЕЛЯХ МАССОВОГО ОБСЛУЖИВАНИЯ И НАДЕЖНОСТИ С использованием управляемых полумарковских процессов исследуется оптимальная

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СТРАХОВОЙ КОМПАНИИ В ВИДЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ M M И. Синякова, С. Моисеева Национальный исследовательский Томский государственный университет Томск, Россия [email protected]

УДК 59. ТЕОРЕМА РАЗДЕЛЕНИЯ В СЛУЧАЕ НАБЛЮДЕНИЙ С ПАМЯТЬЮ Н.С. Демин, С.В. Рожкова Томский государственный университет Томский политехнический университет E-mail: [email protected] Приводится доказательство

По условию теоремы L B (m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

СПИСОК ЛИТЕРАТУРЫ Калашникова ТВ Извеков НЮ Интеграция метода ориентации на спрос в систему ценообразования сети розничной торговли // Известия Томского политехнического университета Т 3 6 С 9 3 Фомин

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ГЕОФИЗИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК МАРЧУКОВСКИЕ НАУЧНЫЕ ЧТЕНИЯ 217 25 июня 14 июля 217 года Труды Редакционная коллегия академик

ТЕМА 7. Случайные процессы. Цель контента темы 7 дать начальные понятия о случайных процессах и цепях Маркова в частности; очертить круг экономических задач, которые используют в своем решении модели,

Лекция 4. Доверительные интервалы Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 4. Доверительные интервалы Санкт-Петербург, 2013 1 / 49 Cодержание Содержание 1 Доверительные

Сибирский математический журнал Январь февраль, 2. Том 41, 1 УДК 517.948 АСИМПТОТИКА РЕШЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННЫХ НЕЛИНЕЙНЫХ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ М. К. Дауылбаев Аннотация: Рассмотрено сингулярно

Лекция Моделирование систем с использованием Марковских случайных процессов Основные понятия Марковских процессов Функция X(t) называется случайной, если ее значение при любом аргументе t является случайной

7 (), 9 Г. В. Бойкова Î íåêîòîðîì íåèçâåñòíîì ðåøåíèè îäíîðîäíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ âòîðîãî ïîðÿäêà Аннотация: для дифференциального уравнения второго порядка найдено решение, которое представляет

ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ УДК 57977 ОБ УПРАВЛЯЕМОСТИ ЛИНЕЙНЫХ СИНГУЛЯРНО ВОЗМУЩЕННЫХ СИСТЕМ С МАЛЫМ ЗАПАЗДЫВАНИЕМ Канд физ-мат наук доц КОПЕЙКИНА Т Б ГУСЕЙНОВА А С Белорусский национальный технический

Компьтерное моделирование. СМО. Лекция 2 1 Оглавление Глава 2. Представление СМО марковским случайным процессом... 1 I. Классификация СМО по Кендалл... 1 II. Марковский случайный процесс... 2 III. Марковские

48 Вестник РАУ Серия физико-математические и естественные науки, 1, 28, 48-59 УДК 68136 ОЦЕНКА ХАРАКТЕРИСТИК НАДЕЖНОСТИ СИСТЕМ ДИСТАНЦИОННОГО ОБУЧЕНИЯ ЧАСТЬ 2 ХВ Керобян, НН Хубларян, АГ Оганесян Российско-Армянский

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

4 (0) 00 Байесовский анализ когда оцениваемый параметр является случайным нормальным процессом Рассмотрена задача байесовского оценивания последовательности неизвестных средних значений q q... q... по

РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

1 Заглавие документа Овсянников А.В. СТАТИСТИЧЕСКИЕ НЕРАВЕНСТВА В СВЕРХРЕГУЛЯРНЫХ СТАТИСТИЧЕСКИХ ЭКСПЕРИМЕНТАХ ТЕОРИИ ОЦЕНИВАНИЯ // Вест нацыянальнай акадэм навук Беларус, 009. Сер фз-мат. навук. С.106-110

УДК 59 ЕВ Новицкая АФ Терпугов ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ОБЪЕМА ПАРТИИ ТОВАРА И РОЗНИЧНОЙ ЦЕНЫ ПРОДАЖИ НЕПРЕРЫВНО ПОРТЯЩЕЙСЯ ПРОДУКЦИИ Рассматривается задача определения оптимального объема партии товара

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Math-Net.Ru Общероссийский математический портал А. А. Назаров, Т. В. Любина, Немарковская динамическая RQ-система с входящим MMP-потоком заявок, Автомат. и телемех., 213, выпуск 7, 89 11 Использование

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК ББК Составитель: Н.А. Пинкина КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Линейная алгебра. Решение типовых примеров. Варианты контрольных

Лекция 2 Решение систем линейных уравнений. 1. Решение систем 3-х линейных уравнений методом Крамера. Определение. Системой 3-х линейных уравнений называется система вида В этой системе искомые величины,

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.
Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.
Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.
Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются: среднее (здесь и в дальнейшем средние величины понимаются как математические ожидания соответствующих случайных величин) число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на два основных типа (класса) : СМО с отказами и href="cmo_length.php">СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.
СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.
Процесс работы СМО представляет собой случайный процесс.
Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.
Процесс называется процессом с дискретными состояниями, если его возможные состояния S 1 , S 2 , S 3 … можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.
Процесс работы СМО представляет собой случайный процесс c дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).
Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пример марковского процесса: система S - счетчик в такси. Состояние системы в момент t характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в момент t > t 0 счетчик покажет то или иное число километров (точнее, соответствующее число рублей) S 1 , зависит от S 0 , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента t 0 .
Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система S - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент t 0 . Вероятность того, что в момент t > t 0 материальный перевес будет на стороне одного из противников, зависят в первую очередь от того, в каком состоянии находится система в данный момент t 0 , а не того, когда и в какой последовательности исчезли фигуры с доски до момента t 0 .
В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состоянии. Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.
Задача 1 . Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время.

Решение. Возможные состояния системы: S 0 - оба узла исправны; S 1 - первый узел ремонтируется, второй исправен; S 2 - второй узел ремонтируется, первый исправен; S 3 - оба узла ремонтируются. Граф системы приведен на рис.1.
Рис. 1
Стрелка, направленная, например, из S 0 в S 1 означает переход системы в момент отказа первого узла, из S 1 в S 0 - переход в момент окончанияремонта этого узла.
На графе отсутствуют стрелки из S 0 , в S 3 и из S 1 в S 2 . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S 0 в S 3) или одновременного окончания ремонтов двух узлов (переход из S 3 в S 0) можно пренебречь.

Поток событий

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.
Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).
Поток характеризуется интенсивностью l - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.
Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: l(t)= l. Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.
Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).
Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени Dt двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поемов, подходящих к станции, ординарен, а поток вагонов не ординарен.
Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.
Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа n независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям l 1 (i=1,2, ..., п) получается поток, близкий к простейшему с интенсивностью l, равной сумме интенсивностей входящих потоков, т.е.
Рассмотрим на оси времени Ot (рис. 2) простейший поток событий как неограниченную последовательность случайных точек.
Рис. 2
Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени t, распределено по закону Пуассона , (1)
для которого математическое ожидание случайной величины равно ее дисперсии: a= s 2 = l t.
В частности, вероятность того, что за время t не произойдет ни одного события (m=0), равна (2)
Найдем распределение интервала времени Т между произвольными двумя соседними событиями простейшего потока.
В соответствии с (15.2) вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна (3)
а вероятность противоположного события, т.е. функция распределения случайной величины Т, есть (4)
Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е. (5)
Рис. 3
Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины (6)
и обратно по величине интенсивности потока l.
Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время t, то это никак не влияет на закон распределения оставшейся части промежутка (T-t): он будет таким же, как и закон распределения всего промежутка Т.
Другими словами, для интервала времени Т между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.
Для простейшего потока с интенсивностью l вероятность попадания на элементарный (малый) отрезок времени Dt хотя бы одного события потока равна согласно (4)
(7)
(Заметим, что эта приближенная формула, получаемая заменой функции e - l Dt лишь двумя первыми членами ее разложения в ряд по степеням Dt, тем точнее, чем меньше Dt).

Марковские процессы были выведены учеными в 1907 году. Ведущие математики того времени развивали эту теорию, некоторые совершенствуют ее до сих пор. Эта система распространяется и в других научных областях. Практические цепи Маркова применяются в различных сферах, где человеку необходимо прибывать в состоянии ожидания. Но, чтобы четко понимать систему, нужно владеть знаниями о терминах и положениях. Главным фактором, который определяет Марковский процесс, считаются случайности. Правда, он не схож с понятием неопределенности. Для него присущи определенные условия и переменные.

Особенности фактора случайности

Это условие подчиняется статической устойчивости, точнее, ее закономерностям, которые не учитываются при неопределенности. В свою очередь, данный критерий позволяет использовать математические методы в теории Марковских процессов, как отмечал ученый, изучавший динамику вероятностей. Созданная им работа касалась непосредственно этих переменных. В свою очередь, изученный и развившийся случайный процесс, имеющий понятия состояния и перехода, а также применяемый в стохастических и математических задачах, при этом дает возможность этим моделям функционировать. Кроме всего прочего, он дает возможность совершенствоваться другим важным прикладным теоретическим и практическим наукам:

  • диффузионная теория;
  • теория массового обслуживания;
  • теория надежности и прочего;
  • химия;
  • физика;
  • механика.

Сущностные особенности не запланированного фактора

Этот Марковский процесс обусловлен случайной функцией, то есть любое значение аргумента считается данной величиной или той, что принимает заранее заготовленный вид. Примерами служат:

  • колебания в цепи;
  • скорость движения;
  • шероховатость поверхности на заданном участке.

Также принято считать, что фактом случайной функции выступает время, то есть происходит индексация. Классификация имеет вид состояния и аргумент. Этот процесс может быть с дискретными, а также непрерывными состояниями или временем. Причем случаи разные: все происходит или в одном, или в другом виде, или одновременно.

Детальный разбор понятия случайности

Построить математическую модель с необходимыми показателями эффективности в явно аналитическом виде было достаточно сложно. В дальнейшем реализовать данную задачу стало возможно, ведь возник Марковский случайный процесс. Разбирая детально это понятие, необходимо вывести некоторую теорему. Марковский процесс - это физическая система, изменившая свое положение и состояние, которые заранее не были запрограммированы. Таким образом, выходит, что в ней протекает случайный процесс. Например: космическая орбита и корабль, который выводится на нее. Результат достигнут лишь благодаря каким-то неточностям и корректировкам, без этого не реализуется заданный режим. Большинству происходящих процессов присущи случайность, неопределенность.

По существу вопроса, практически любой вариант, который можно рассмотреть, будет подвержен этому фактору. Самолет, техническое устройство, столовая, часы - все это подвержено случайным изменениям. Причем данная функция присуща любому происходящему процессу в реальном мире. Однако пока это не касается индивидуально настроенных параметров, происходящие возмущения воспринимаются как детерминированные.

Понятие Марковского случайного процесса

Проектировка какого-либо технического или механического прибора, устройства вынуждает создателя учитывать различные факторы, в частности неопределенности. Вычисление случайных колебаний и возмущений возникает в момент личной заинтересованности, например, при реализации автопилота. Некоторые процессы, изучаемые в науках вроде физики и механики, являются таковыми.

Но обращать на них внимание и проводить скрупулезные исследования следует начинать в тот момент, когда это непосредственно нужно. Марковский случайный процесс имеет следующее определение: характеристика вероятности будущего вида зависит от состояния, в котором он находится в данный момент времени, и не имеет отношения к тому, как выглядела система. Итак, данное понятие указывает на то, что результат можно предсказать, учитывая лишь вероятность и забыв про предысторию.

Подробное токование понятия

В настоящий момент система находится в определенном состоянии, она переходит и меняется, предсказать, что будет дальше, по сути, невозможно. Но, учитывая вероятность, можно сказать, что процесс будет завершен в определенном виде или сохранит предыдущий. То есть будущее возникает из настоящего, забывая о прошлом. Когда система или процесс переходит в новое состояние, то предысторию обычно опускают. Вероятность в Марковских процессах играет немаловажную роль.

Например, счетчик Гейгера показывает число частиц, которое зависит от определенного показателя, а не от того, в какой именно момент оно пришло. Здесь главным выступает вышеуказанный критерий. В практическом применении могут рассматриваться не только Марковские процессы, но и подобные им, к примеру: самолеты участвуют в бою системы, каждая из которых обозначена каким-либо цветом. В данном случае главным критерием вновь выступает вероятность. В какой момент произойдет перевес в числе, и для какого цвета, неизвестно. То есть этот фактор зависит от состояния системы, а не от последовательности гибели самолетов.

Структурный разбор процессов

Марковским процессом называется любое состояние системы без вероятностного последствия и без учета предыстории. То есть, если включить будущее в настоящее и опустить прошлое. Перенасыщение данного времени предысторией приведет к многомерности и выведет сложные построения цепей. Поэтому лучше эти системы изучать простыми схемами с минимальными числовыми параметрами. В результате эти переменные считаются определяющими и обусловленными какими-либо факторами.

Пример Марковских процессов: работающий технический прибор, который в этот момент исправен. В данном положении вещей интерес представляет вероятность того, что устройство будет функционировать еще длительный период времени. Но если воспринимать оборудование как отлаженное, то этот вариант уже не будет принадлежать к рассматриваемому процессу ввиду того, что нет сведений о том, сколько аппарат работал до этого и производился ли ремонт. Однако если дополнить эти две переменные времени и включить их в систему, то ее состояние можно отнести к Марковскому.

Описание дискретного состояния и непрерывности времени

Модели Марковских процессов применяются в тот момент, когда необходимо пренебречь предысторией. Для исследования в практике наиболее часто встречаются дискретные, непрерывные состояния. Примерами такой ситуации являются: в структуру оборудования входят узлы, которые в условиях рабочего времени могут выйти из строя, причем происходит это как незапланированное, случайное действие. В результате состояние системы подвергается ремонту одного или другого элемента, в этот момент какой-то из них будет исправен или они оба будут отлаживаться, или наоборот, являются полностью налаженными.

Дискретный Марковский процесс основан на теории вероятности, а также является переходом системы из одного состояния в другое. Причем данный фактор происходит мгновенно, даже если происходят случайные поломки и ремонтные работы. Чтобы провести анализ такого процесса, лучше использовать графы состояний, то есть геометрические схемы. Системные состояния в таком случае обозначены различными фигурами: треугольниками, прямоугольниками, точками, стрелками.

Моделирование данного процесса

Марковские процессы с дискретными состояниями - возможные видоизменения систем в результате перехода, осуществляющегося мгновенно, и которые можно пронумеровать. Для примера можно построить график состояния из стрелок для узлов, где каждая будет указывать путь различно направленных факторов выхода из строя, рабочего состояния и т. д. В дальнейшем могут возникать любые вопросы: вроде того, что не все геометрические элементы указывают верное направление, ведь в процессе способен испортиться каждый узел. При работе важно учитывать и замыкания.

Марковский процесс с непрерывным временем происходит тогда, когда данные заранее не фиксируются, они происходят случайно. Переходы ранее были не запланированы и происходят скачками, в любой момент. В данном случае вновь главную роль играет вероятность. Однако, если сложившаяся ситуация относится к указанной выше, то для описания потребуется разработать математическую модель, но важно разбираться в теории возможности.

Вероятностные теории

Данные теории рассматривают вероятностные, имеющие характерные признаки вроде случайного порядка, движения и факторов, математические задачи, а не детерминированные, которые являются определенными сейчас и потом. Управляемый Марковский процесс имеет фактор возможности и основан на нем. Причем данная система способна переходить в любое состояние мгновенно в различных условиях и временном промежутке.

Чтобы применять эту теорию на практике, необходимо владеть важными знаниями вероятности и ее применения. В большинстве случаев каждый пребывает в состоянии ожидания, которое в общем смысле и есть рассматриваемая теория.

Примеры теории вероятности

Примерами Марковских процессов в данной ситуации могут выступать:

  • кафе;
  • билетные кассы;
  • ремонтных цеха;
  • станции различного назначения и пр.

Как правило, люди ежедневно сталкиваются с этой системой, сегодня она носит название массового обслуживания. На объектах, где присутствует подобная услуга, есть возможность требования различных запросов, которые в процессе удовлетворяются.

Скрытые модели процесса

Такие модели являются статическими и копируют работу оригинального процесса. В данном случае основной особенностью является функция наблюдения за неизвестными параметрами, которые должны быть разгаданы. В результате эти элементы могут использоваться в анализе, практике или для распознавания различных объектов. Обычные Марковские процессы основаны на видимых переходах и на вероятности, в скрытой модели наблюдаются только неизвестные переменные, на которые оказывает влияние состояние.

Сущностное раскрытие скрытых Марковских моделей

Также она имеет распределение вероятности среди других значений, в результате исследователь увидит последовательность символов и состояний. Каждое действие имеет распределение по вероятности среди других значений, ввиду этого скрытая модель дает информацию о сгенерированных последовательных состояниях. Первые заметки и упоминания о них появились в конце шестидесятых годов прошлого столетия.

Затем их стали применять для распознавания речи и в качестве анализаторов биологических данных. Кроме того, скрытые модели распространились в письме, движениях, информатике. Также эти элементы имитируют работу основного процесса и пребывают в статике, однако, несмотря на это, отличительных особенностей значительно больше. В особенности данный факт касается непосредственного наблюдения и генерирования последовательности.

Стационарный Марковский процесс

Данное условие существует при однородной переходной функции, а также при стационарном распределении, считающимся основным и, по определению, случайным действием. Фазовым пространством для данного процесса является конечное множество, но при таком положении вещей начальная дифференциация существует всегда. Переходные вероятности в данном процессе рассматриваются при условиях времени или дополнительных элементах.

Детальное изучение Марковских моделей и процессов выявляет вопрос об удовлетворении равновесия в различных сферах жизни и деятельности общества. С учетом того, что данная отрасль затрагивает науку и массовое обслуживание, ситуацию можно исправить, проанализировав и спрогнозировав исход каких-либо событий или действий тех же неисправных часов или техники. Чтобы полностью использовать возможности Марковского процесса, стоит детально в них разбираться. Ведь этот аппарат нашел широкое применение не только в науке, но и в играх. Эта система в чистом виде обычно не рассматривается, а если и используется, то только на основе вышеупомянутых моделей и схем.

Потоки событий Это последовательность событий происходящих одно за другим в определенные интервалы времени. T - средняя величина времени между соседними событиями Если T=const, то события в потоке распределены равномерно. - интенсивность потока, т. е. среднее число событий, происходящих в единицу времени.

Потоки событий Стационарный Количество событий, попадающих на любой произвольный интервал времени не зависит от положения на числовой оси, а зависит только от его ширины Без последействия Для любых двух непересекающихся временных интервалов количество событий, попадающих на один из них, не зависит от того, сколько событий произошло на другом интервале Регулярный Противоположный потоку без последействия (с последействием)

Потоки событий Ординарный В любой момент времени происходит одно и только одно событие, т. е. вероятность появления на бесконечно малом временном интервале двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного события Пуассоновский Нестационарный, ординарный поток без последействия Простейший Стационарный, ординарный поток без последействия, для которого число событий, появляющихся за промежуток времени, распределено по закону Пуассона, а интервалы времени между двумя последовательными событиями характеризуются показательным распределением. Это стационарный пуассоновский поток.

Экономическое применение Современные финансово – банковские операции предполагают погашение задолженности в рассрочку, периодическое поступление доходов от инвестиций. Такого рода последовательность, или ряд платежей, можно назвать потоком платежей. Поток платежей все члены которого – положительные величины, а временные интервалы между платежами одинаковы, называют финансовой рентой. Рентой является последовательность получения процентов по облигациям, платежи по потребительскому кредиту, выплаты в рассрочку страховых премий. Характеристики потока платежей: интервал между двумя соседними платежами, вероятности выплаты платежа, широко применяются в различных финансовых расчетах. Без них невозможно разработать план последовательного погашения задолженности, измерить финансовую эффективность проекта, осуществить сравнение или безубыточное изменение условий контрактов.

Задача Для анализа изменения с течением времени размера текущего фонда банка, занимающегося выдачей долгосрочных ссуд, важно обладать информацией о процессе поступления в банк выплат по займам. Наблюдение за банком в предшествующем периоде показало, что число поступающих в банк выплат за любой промежуток времени не зависит от момента времени с которого начался отсчет промежутка времени, а зависит только от его продолжительности. Ожидаемое число выплат в банк за неделю равно 2. Исследуем, какова вероятность поступления в банк за месяц 7 выплат и найдем вероятность того, что интервал времени между двумя соседними выплатами меньше 2 дней.

Решение По условию задачи поток выплат можно считать простейшим с интенсивностью =2 (за неделю). Следовательно, число выплат, поступивших за промежуток времени =4 недели (1 месяц), распределено по закону Пуассона. Интервалы времени между двумя последовательными выплатами в простейшем потоке имеют показательный закон распределения.

Решение Пусть X() - дискретная случайная величина, представляющая собой число выплат, поступивших за промежуток времени. Она распределена по закону Пуассона. M(X)=D(X)= Тогда - вероятность того, что за промежуток времени в потоке наступят точно m событий равна Следовательно, при интенсивности потока выплат =2 вероятность поступления в банк за месяц (=4) 7 выплат (m=7) равна

Решение Пусть непрерывная случайная величина T - промежуток времени между двумя любыми соседними выплатами (событиями простейшего потока). Она имеет показательный закон распределения. M(T)=1/ , D(T)=1/ 2 Тогда вероятность P(T

Задачи для самостоятельного решения 1. Обычно студент приходит на остановку ровно в 8 часов утра и, сев в первый пришедший автобус, идущий в направлении университета, вовремя прибывает на занятия, которые начинаются ровно в 9 утра. Интервалы движения автобуса составляют в среднем 10 минут, а время в пути автобуса равно 30 минутам. Пусть поток автобусов является простейшим. Найдите вероятность того, что студент все же опоздает на занятия.

Задачи для самостоятельного решения 2. Поток заявок, поступающих в некоторую систему массового обслуживания, достаточно моделируется простейшим. При изучении опытных данных рассматривалось 200 выбранных наудачу промежутков времени длиной в 2 мин. Оказалось, что число тех из них, в которых не было зарегистрировано ни одной заявки, равно 27. Найти математическое ожидание и среднее квадратическое отклонение числа заявок за 1 час.

Основные понятия Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если система S с течением времени t изменяет свои состояния S(t) случайным образом, то говорят, что в системе S протекает случайный процесс. В любой момент времени система пребывает только в одном из состояний, то есть для любого момента времени t найдется единственное состояние Si такое, что S(t) = Si. Множество состояний может быть дискретно (техническое состояние объекта: исправен - неисправен, загружен - находится в простое; численность персонала; количество объектов, ожидающих обслуживания в очереди) или непрерывно (доход, объем производства).

Основные понятия В случае дискретного множества состояний система меняет свои состояния скачком (мгновенно). В случае же непрерывного множества состояний переход системы происходит непрерывно (плавно). В зависимости от времени пребывания системы в каждом состоянии различают процессы с дискретным временем (искусственная числовая сетка времени) и с непрерывным временем (физическое время, переход системы из одного состояния в другое может осуществляться в любой момент времени). Случайный процесс, протекающий в системе S, называется Марковским, если он обладает свойством отсутствия последствия, состоящим в том, что для каждого момента времени t 0 вероятность любого состояния S(t) системы S в будущем (при t>t 0) зависит только от ее состояния S(t 0) в настоящем (при t=t 0) и не зависит от того, как и сколько времени развивался этот процесс в прошлом (при t>t 0).

А. А. Марков (1856 - 1922) Андрей Андреевич Марков - старший - выдающийся русский математик, разработавший основы теории случайных процессов без последействия, которые в математике называют Марковскими процессами в его честь. А. А. Марков - старший известен также как давший вероятностное обоснование метода наименьших квадратов (МНК), приведший одно из доказательств предельной теоремы теории вероятностей и многое другое.

Виды Марковских процессов Дискретные состояния и дискретное время (цепь Маркова) Непрерывные состояния и дискретное время (Марковские последовательности) Дискретные состояния и непрерывное время (непрерывная Марковская цепь) Непрерывные состояния и непрерывное время. На практике большинство задач по Марковским процессам описываются с помощью Марковских цепей с дискретным или непрерывным временем.

Марковские цепи Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний.

Задание Марковской цепи множеством состояний S = {s 1, …, sn}, событием является переход из одного состояния в другое в результате случайного испытания вектором начальных вероятностей (начальным распределением) p(0) = {p(0)(1), …, p(0)(n)}, определяющим вероятности p(0)(i) того, что в начальный момент времени t = 0 процесс находился в состоянии si матрицей переходных вероятностей P = {pij}, характеризующей вероятность перехода процесса с текущим состоянием si в следующее состояние sj, при этом сумма вероятностей переходов из одного состояния равна 1

Виды Марковских цепей Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага k к шагу (k+1) не меняются. Разложимые Марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. Эргодические Марковские цепи описываются сильно связанным графом. В такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.

Цель моделирования - определить вероятность системы находится в j-ом состоянии после k-го шага. Обозначим эту вероятность - однородная Марковская цепь - неоднородная Марковская цепь

Задача № 1 Некоторая совокупность рабочих семей поделена на три группы: 1 – семьи, не имеющие автомашины и не намеревающиеся ее приобрести; 2 – семьи, не имеющие автомашины, но собирающиеся ее приобрести, и, наконец, 3 – семьи, имеющие автомашину. Статистические обследования дали возможность оценить вероятность перехода семей из одной группы на протяжении года в другую. При этом матрица перехода оказалась такой:

Задача № 1 Найти: а)вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года; б) вероятность того, что семья, не имевшая автомашины и намеревающаяся ее приобрести, будет иметь автомашину через 2 года. (выполнить решение пункта (б) данной задачи самостоятельно)

Решение задачи № 1 а) Дано: т. е. вектор начальных вероятностей p(0)=(1, 0, 0) (сейчас система в состоянии 1) Найти: (через 2 года в состоянии 1) Найдем вероятности системы оказаться в каждом из состояний через 1 год (умножение вектора начальных вероятностей на 1 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 2 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 3 столбец матрицы переходных вероятностей)

Решение задачи № 1 Получим вектор вероятностей через 1 год В нашем случае это 1 -ая строка матрицы переходных вероятностей Найдем вероятности системы оказаться в 1 состоянии через 2 года (умножение вектора вероятностей через 1 год, т. е. 1 -ой строки матрицы переходных вероятностей на 1 -ый столбец матрицы переходных вероятностей)

Решение задачи № 1 Вычисления: Ответ: вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года равна 0, 64

Задача № 2 Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее: после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях – в В и в 40 случаях – в С; после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях – в В и в 20 случаях – в С; после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях – в В и в 20 случаях – в С. Таким образом, район следующей доставки определяется только предыдущей доставкой.

Задача № 2 Если курьер стартует из центрального округа, какова вероятность того, что осуществив две доставки, он будет в южном округе? Выполните решение задачи самостоятельно: Составьте матрицу переходных вероятностей Нарисуйте граф данного процесса Вычислите искомую вероятность

Предельные вероятности Для эргодических цепей при достаточно большом времени функционирования (t стремится к бесконечности) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени. Такие вероятности называются предельными (или финальными, стационарными) вероятностями состояний, они показывает среднее относительное время пребывания системы в определенном состоянии. Например, если предельная вероятность i-го состояния pi=0. 5, то это означает, что в среднем половину времени система находится в i-ом состоянии.

Предельные вероятности Пусть xi – предельные вероятности (i=1. . n), где n – число состояний. Тогда xi являются единственным решением системы линейных уравнений. В данную систему входят уравнения:

Пример Матрица переходных вероятностей (число состояний n=2) и графическое изображение Марковского процесса: Предельные вероятности x 1 и x 2 можно найти, решив систему

Задача № 3 Две машины А и В сдаются в аренду по одной и той же цене. Эти машины имеют следующие матрицы переходных вероятностей: где 1 – состояние, когда машина работает хорошо; 2 – состояние, когда машина требует регулировки. Определить вероятности для обеих машин. Какую машину стоит арендовать?

Задача № 4 Посетитель банка с намерением получить кредит проходит ряд проверок (состояний): е 1 – оформление документов; е 2 – кредитная история; е 3 – возвратность; е 4 – платежеспособность. По результатам проверки возможны два исхода: отказ в выдаче кредита (е 6) и получение кредита (е 5).

Задача № 4 Требуется: a) описать данный процесс как Марковскую цепь и построить переходную матрицу (выполнить самостоятельно); б) найти среднее время получения положительного и отрицательного результата (решение в Excel).

СМО – система, подразумевающая наличие в ней 2х процессов: поступления заявок и обслуживания заявок.

Условно схема представляется в виде

И Накопитель К

Обслуживающий прибор

Процесс поступления заявок – процесс по времени.

Поток событий – последовательность моментов времени наступления каких-либо событий.

С любой СМО связаны 3 потока:

1) входной поток. Последовательность моментов времени поступления заявок

2) выходной поток. Последовательность моментов времени ухода обслужившихся заявок.

3) поток обслуживаний. Последовательность моментов времени окончания ослуживания заявок в предположении что обслуживание осуществляется непрерывно.

Поток характеризуется интенсивностью – среднее число событий в единицу времени.

Поток наз-ся регулярным , если интервалы времени между событиями в нём одинаковы. Нерегулярный – если интервалы времени м\ду событиями – случайные величины.

Поток рекуррентный , если интервалы времени между событиями – случайные величины, распределённые по одному и томуже закону.

Поток наз-ся однородным , если он х-ся только множеством {ti} наступивших событий. Неоднородный – если он описывается множеством {ti,fi}, где ti – моменты времени наступления событий, fi – признак заявки.

Сами СМО подразделяются на СМО с отказами и СМО с очередями . СМО с очередями подразделяется на с ограниченной очередью и с неограниченной очередью. Частный случай – ограниченное время ожидания в очереди.

В системах последнего типа заявки, которые не могут быть обслужены сразу, составляют очередь и с помощью некоторой дисциплины обслуживания выбираются из нее. Некоторые наиболее употребляемые дисциплины:

1) FIFO (first in – first out) – в порядке поступления;

2) LIFO (last in – first out) – первой обслуживается поступившая последней;

3) SIRO (service in random order) – в случайном порядке;

4) – приоритетные системы. (абсолютный и относительный приоритеты. При относительном заявки выстраиваются по значению приоритета – вначале высокие, потом ниже.)

Для краткой характеристики СМО Д.Кендалл ввел символику (нотацию)

m - число обслуживающих каналов;

n – количество мест ожидания (емкость накопителя).

k – кол-во источников.

A и B характеризуют соответственно входной поток и поток обслуживания, задавая функцию распределения интервалов между заявками во входном потоке и функцию распределения времен обслуживания.

А и В могут принимать значения:

D – детерминированное распределение;

М – показательное;

Е r – распределение Эрланга;

H r - гиперпоказательное;

G – распределение общего вида.

При этом подразумевается, что потоки являются рекуррентными , т.е. интервалы между событиями независимы и имеют одинаковое распределение. Обязательными в нотации являются первых 3 позиции. По умолчанию если n отсутствует имеем систему с отказами, если отсутствует k, то по умолчанию – один источник.

9. Простейший поток, его свойства и значение при исследовании смо.

Поток, удовлетворяющий следующим трем требованиям, называются простейшим.

1)Поток стационарен , если вероятность поступления заданного числа событий в течение интервала времени фиксированной длины зависит только от продолжительности интервала и не зависит от его расположения на временной оси.

2)Поток ординарный , если вероятность появления двух или более событий в течение элементарного интервала времени
→0 есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале.

3)Поток называется потоком без последействия , если для любых неперекрывающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Иногда это свойство формулируют следующим образом: распределение времени до ближайшего события не зависит от времени наблюдения, т.е. от того, сколько времени прошло после последнего события.

Поток, удовлетворяющий этим трем условиям, называется простейшим.

Для него число событий, попадающих на любой фиксированный интервал времени подчиняется закону Пуассона, поэтому его иначе называют стационарным пуассоновским.

вероятность того, что за интервал времени τ произойдет ровно m событий.

Условие отсутствие последствия (заявки поступают независимо друг от друга) наиболее существенно для простейшего потока.

пуассоновского распределения.

Вероятность того, что за не произойдет не одного события

Вероятность, что за времяпроизойдет хотя бы одно событие

Иногда удобней анализировать систему, рассматривая интервалы между событиями T:

Это показательный закон с интенсивностью .

Математическое ожидание и среднее квадратичное для T:

Свойство отсутствие последействия позволяет использовать для исследования простейшего потока аппарат Марковских цепей.

Введем состояния системы следующим образом – считаем систему, находящейся в состоянии S, если в момент времени t в системе находится S заявок.

Определим вероятность для системы, состояние которой определяется только поступление заявок, того что в момент
система останется в том же состоянии. Очевидно, эта вероятность определяется тем, что за интервал
не поступит ни одной заявки


(S=0, 1, 2…)

Разлагая в ряд, получим:

Вероятность получения хотя бы одной заявки

Аналогичные соотношения можно получить, рассматривая процесс обслуживания заявок.

Простейшие или близкие к ним потоки часто встречаются на практике.

При суммировании достаточно большого кол-ва потоков с последействием, получается поток с последействием. В простейшем потоке приблизительно 68% маленьких интервалов

При вероятностном просеивании простейшего потока получается простейший поток

10. Непрерывно-стохастические модели (Q -схемы). Одноканальная СМО с блокировкой. Построение графа состояний .

При построении моделей такого рода как правило, используются рассмотрения моделируемых объектов, как Систем Массового Обслуживания (СМО).

Таким образом могут быть представлены различные по своей физической природе процессы – экономические, технические, производственные и т.д.

В СМО можно выделить два стохастических процесса:

Поступление заявок на обслуживание;

Обслуживание заявок.

Поток событий – последовательность событий, происходящих одно за другим в некоторые моменты времени. В СМО будем выделять два потока:

Входной поток: множество моментов времени поступления в систему заявок;

Поток обслуживания: множество моментов окончания обработки системой заявок.

В общем случае СМО элементарного вида может быть представлено следующим образом

Обслуживающий прибор

И – источник;

О – очередь;

К – канал обслуживания.

Одноканальная СМО с блокировкой . Система M / M / 1/ n

Рассмотрим двухфазную систему, для которой при исследовании P – схем полагали детерминированный входной и просеянный поток обслуживания.

Считаем, что теперь входной поток пуассоновский с интенсивностью, а поток обслуживания – пуассоновский с интенсивностью.

Как и прежде, дисциплина обслуживания FIFO с блокировкой источника.

Состояние – число заявок в системе.

Всего возможно n +3 состояния: от 0 до n +2 .

Обозначим
- вероятность прихода за
i заявок;

- вероятность обслуживания за
i заявок.

ввиду ординарное

Аналогично

+
=

1-
+

Система уравнений:
и
- вероятности состояний.

при
получим

Ввиду стационарности потоков имеем:

и
,

Аналогично для остальных строк системы.

Окончательно имеем:

Получена система алгебраических уравнений.

Преобразуем её, начиная со второго и заканчивая предпоследним - новое уравнение получаем сложением старого с новым предыдущим.

В результате новое предпоследнее будет совпадать со старым последним уравнением:

i=0, 1,….n+1

Обозначим

,

Используем уравнеие нормировки

;

;

Это сумма геометрической прогрессии:

Cреднее время обсл. заявки



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта