Главная » Канализация » Решение системы линейных уравнений с тремя неизвестными методом крамера. Решение системы трёх линейных уравнений с тремя переменными методом крамера Системы уравнений с 3 переменными

Решение системы линейных уравнений с тремя неизвестными методом крамера. Решение системы трёх линейных уравнений с тремя переменными методом крамера Системы уравнений с 3 переменными

Системой линейных уравнений называется совокупность рассматриваемых совместно нескольких линейных уравнений.

В системе может быть любое число уравнений с любым числом неизвестных.

Решением системы уравнений называется совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, то есть обращающая их в тождества.

Система, имеющая решение, называется совместной, в противном случае – несовместной.

Для решения системы применяют различные методы.

Пусть
(число уравнений равно числу неизвестных).

Метод Крамера

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными:

(7)

Для нахождения неизвестных
применим формулу Крамера:

(8)

где - определитель системы, элементы которого есть коэффициенты при неизвестных:

.

получается путём замены первого столбца определителя столбцом свободных членов:

.

Аналогично:

;
.

Пример 1. Решить систему по формуле Крамера:

.

Решение: Воспользуемся формулами (8):

;

;

;

;

Ответ:
.

Для любой системы линейных уравнений снеизвестными можно утверждать:


Матричный способ решения

Рассмотрим решение системы (7) трёх линейных уравнений с тремя неизвестными матричным способом.

Используя правила умножения матриц, данную систему уравнений можно записать в виде:
, где

.

Пусть матрица невырожденная, т.е.
. Умножая обе части матричного уравнения слева на матрицу
, обратную матрице, получим:
.

Учитывая, что
, имеем

(9)

Пример 2. Решить систему матричным способом:

.

Решение: Введём матрицы:

- из коэффициентов при неизвестных;

- столбец свободных членов.

Тогда систему можно записать матричным уравнением:
.

Воспользуемся формулой (9). Найдём обратную матрицу
по формуле (6):

;

.

Следовательно,

Получили:

.

Ответ:
.

Метод последовательного исключения неизвестных (метод Гаусса)

Основная идея применяемого метода заключается в последовательном исключении неизвестных. Поясним смысл этого метода на системе трёх уравнений с тремя неизвестными:

.

Допустим, что
(если
, то изменим порядок уравнений, выбрав первым уравнением то, в котором коэффициент прине равен нулю).

Первый шаг: а) делим уравнение
на
; б) умножаем полученное уравнение на
и вычитаем из
; в) затем полученное умножаем на
и вычитаем из
. В результате первого шага будем иметь систему:


,


Второй шаг: поступаем с уравнением
и
точно так же, как с уравнениями
.

В итоге исходная система преобразуется к так называемому ступенчатому виду:

Из преобразованной системы все неизвестные определяются последовательно без труда.

Замечание. Практически удобнее приводить к ступенчатому виду не саму систему уравнений, а матрицу из коэффициентов, при неизвестных, и свободных членов.

Пример 3. Решить методом Гаусса систему:

.

Переход от одной матрицы к другой будем записывать при помощи знака эквивалентности ~.

~
~
~
~

~
.

По полученной матрице выписываем преобразованную систему:

.

Ответ:
.

Замечание: Если система имеет единственное решение, то ступенчатая система приводится к треугольной, то есть к такой, в которой последнее уравнение будет содержать одно неизвестное. В случае неопределённой системы, то есть такой, в которой число неизвестных больше числа линейно независимых уравнений, треугольной системы не будет, так как последнее уравнение будет содержать более одного неизвестного (система имеет бесчисленное множество решений). Когда же система несовместна, то, после приведения её к ступенчатому виду, она будет содержать хотя бы одно значение вида
, то есть уравнение, в котором все неизвестные имеют нулевые коэффициенты, а правая часть отлична от нуля (система решений не имеет). Метод Гаусса применим к произвольной системе линейных уравнений (при любых
и).

      Теорема существования решения системы линейных уравнений

При решении системы линейных уравнений методом гаусса ответ на вопрос, совместна или несовместна данная система может быть дан лишь в конце вычислений. Однако часто бывает важно решить вопрос о совместности или несовместности системы уравнений, не находя самих решений. Ответ на этот вопрос даёт следующая теорема Кронекера-Капелли.

Пусть дана система
линейных уравнений снеизвестными:

(10)

Для того, чтобы система (10) была совместной, необходимо и достаточно чтобы ранг матрицы системы

.

был равен рангу её расширенной матрицы

.

Причём, если
, то система (10) имеет единственное решение; если же
, то система имеет бесчисленное множество решений.

Рассмотрим однородную систему (все свободные члены равны нулю) линейных уравнений:

.

Эта система всегда совместна, так как она имеет нулевое решение .

В следующей теореме даны условия, при которых система имеет также решения, отличные от нулевого.

Терема. Для того, чтобы однородная система линейчатых уравнений имела нулевое решение, необходимо и достаточно, чтобы её определитель был равен нулю:

.

Таким образом, если
, то решение- единственное. Если
, то существует бесконечноё множество других ненулевых решений. Укажем один из способов отыскания решений для однородной системы трёх линейных уравнений с тремя неизвестными в случае
.

Можно доказать, что если
, а первое и второе уравнения непропорциональны (линейно независимы), то третье уравнение есть следствие первых двух. Решение однородной системы трёх уравнений с тремя неизвестными сводится к решению двух уравнений с тремя неизвестными. Появляется так называемое свободное неизвестное, которому можно придавать произвольные значения.

Пример 4. Найти все решения системы:

.

Решение. Определитель этой системы

.

Поэтому система имеет нулевые решения. Можно заметить, что первые два уравнения, например, непропорциональны, следовательно, они линейно независимые. Третье является следствием первых двух (получается, если к первому уравнению прибавить удвоенное второе). Отбросив его, получим систему двух уравнений с тремя неизвестными:

.

Полагая, например,
, получим

.

Решая систему двух линейных уравнений, выразим ичерез:
. Следовательно, решение системы можно записать в виде:
, где- произвольное число.

Пример 5. Найти все решения системы:

.

Решение. Нетрудно видеть, что в данной системе только одно независимое уравнение (два других ему пропорциональны). Система из трёх уравнений с тремя неизвестными свелась к одному уравнению с тремя неизвестными. Появляются два свободных неизвестных. Найдя, например, из первого уравнения
при произвольныхи, получим решения данной системы. Общих вид решения можно записать, гдеи- произвольные числа.

      Вопросы для самопроверки

Сформулируйте правило Крамера для решения системы линейных уравнений снеизвестными.

В чём сущность матричного способа решения систем?

В чём заключается метод Гаусса решения системы линейных уравнений?

Сформулируйте теорему Кронекера-Капелли.

Сформулируйте необходимое и достаточноё условие существования ненулевых решений однородной системы линейных уравнений.

      Примеры для самостоятельного решения

Найдите все решения систем:

1.
; 2.
;

3.
; 4.
;

5.
; 6.
;

7.
; 8.
;

9.
; 10.
;

11.
; 12.
;

13.
; 14.
;

15.
.

Определите, при каких значениях исистема уравнений

а) имеет единственное решение;

б) не имеет решения;

в) имеет бесконечно много решений.

16.
; 17.
;

Найти все решения следующих однородных систем:

18.
; 19.
;

20.
; 21.
;

22.
; 23.
;

      Ответы к примерам

1.
; 2.
; 3. Ǿ; 4. Ǿ;

5.
- произвольное число.

6.
, где- произвольное число.

7.
; 8.
; 9. Ǿ; 10. Ǿ;

11.
, где- произвольное число.

12. , гдеи- произвольные числа.

13.
; 14.
гдеи- произвольные числа.

15. Ǿ; 16. а)
; б)
; в)
.

17. а)
; б)
; в)
;

18.
; 19.
; 20., где- произвольное число.

21. , где- произвольное число.

22. , где- произвольное число.

23. , гдеи- произвольные числа.

Система трех линейных уравнений с тремя неизвестными имеет вид:

где aij- коэффициенты при неизвестных х, у и z, индексы: i = 1,2,3 - определяют номер уравнения и j = 1,2,3 - номер неизвестного.

Определение: Решением системы уравнений (3) называется тройка чисел (х0,у0,z0), при подстановке которой в эту систему все уравнения обращаются в верные числовые тождества.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ РЕШЕНИЯ СИСТЕМЫ уравнений с тремя неизвестными

Геометрически система уравнений (3) задает 3 плоскости в пространстве.

При этом возможны 3 случая:

  • 1) плоскости пересекаются в единой точке с координатами (x0,y0,z0), система в этом случае имеет единственное решение - она совместна и определена;
  • 2) плоскости совпадают друг с другом - система имеет бесконечное множество решений, т.е. она совместна, но не определена;
  • 3) плоскости параллельны друг другу и общих точек пересечения не имеют - система несовместна и решений не имеет.

Данную систему (3) можно решить методом Крамера с помощью определителей третьего порядка.

Введем понятие матрицы и определителя третьего порядка.

МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Определение: Квадратной матрицей 3 -го порядка называется таблица чисел, которая состоит из 3-х строк и 3-х столбцов и обозначается:

где аi,j - называются элементами матрицы, индексы: i = 1, 2, 3 - определяет номер; строки, j = 1, 2, 3 - номер столбца. Элементы а11а22а33 образуют главную диагональ матрицы, а элементы а13а22а31 образуют побочную диагональ матрицы.

Каждая матрица характеризуется своим определителем.

Определение: Определителем матрицы 3-го порядка называется число, которое вычисляется методом диагоналей - как разность суммы произведений элементов главных диагоналей и суммы произведений элементов побочных диагоналей.

Определитель 3-го порядка обозначается и вычисляется по следующей схеме:


Существует другой, универсальный способ вычисления определителей 3-го порядка, который называется методом разложения и реализуется по следующей схеме:

Данная формула называется формулой разложения по элементам 1-ой строки. Эта формула позволяет вычисление определителя 3-го порядка свести к вычислению определителей 2-го порядка.

Для раскрытия сущности этой формулы введем два понятия - минора и алгебраического дополнения.

Определение: Минором Мij элемента aij определителя 3-го порядка называется определитель 2-го порядка, полученный путем вычеркивания i - строки и j - столбца, на пересечении которых стоит данный элемент.

Так, для a11 соответствует минор M11 =, для a12 - минор M12=, а для а13- минор M13 =.

Определение: Алгебраическим дополнением Аij элемента aij называется его минор Мij, взятый со знаком +, если сумма номеров строки и столбца, в которых стоит элемент, четная и со знаком - , если эта сумма нечетная, т.е.: Aij = (-1)i+jMij.

Например: A11 = (-1)1+1M11 = M11; A12 = (-1)1+2M12 = -M12; A13 = (-1)1+3 M13 = M13.

Схема чередования знаков миноров для соответствующих элементов матрицы: .

Исходя из этих понятий, формулу разложения по элементам 1-ой строки при вычислении определителя 3-го порядка можно записать так:

Определитель может быть разложен по любой строке или столбцу и равен сумме произведений элементов любой строки или столбца на их алгебраические дополнения. Этот способ вычисления определителей называется методом разложения. Он универсален и применим для определителей любого порядка.

Перейдем к решению системы линейных уравнений с тремя неизвестными методом Крамера.

Систему: (3) путем последовательного исключения неизвестных х, у и z можно привести к равносильной (эквивалентной) системе (4), имеющей одинаковые решения с исходной системой (3): (4), где - определитель системы, - определители неизвестных x, y, z, которые получаются из определителя системы путем замены столбца коэффициентов при неизвестном на столбец свободных членов.

При решении системы (4) возможны 3 случая при выполнении следующих условий:

Если определитель системы, то, поделив обе части уравнений системы на, найдем неизвестные по формулам Крамера:

При первом условии система имеет единственное решение, она совместна и определена. Три плоскости пересекаются в одной точке с координатами (х0, у0, z0).

1. Если определитель системы и все определители неизвестных, то имеем и при любых значениях x, y и z имеем верное тождество.

При втором условии система имеет бесконечное множество решений, она совместна, но не определена. Плоскости совпадают друг с другом.

2. Если определитель системы, а определители неизвестных могут быть или или, то имеем:, что невозможно при любых значениях х и у.

При третьем условии система решения не имеет, она не совместна. Плоскости параллельны друг другу и общих точек не имеют.

Метод решения системы линейных уравнений с помощью определителей называется методом Крамера.

Пример. Решить систему линейных уравнений методом Крамера:

  • 1) Вычислим определители системы и неизвестных, х, у и z.
  • а) методом разложения по 1-ой строке:

б) методом диагоналей:

2) Найдем решение системы по формулам Крамера:

х0 ; у0 = z0 =

Проверка: (верно).

Ответ: (х0=0, у0= -1, z0=2)-точка пересечения плоскостей.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7

РЕШЕНИЕ СИСТЕМЫ 3 ЛИНЕЙНЫХ УРАВНЕНИЙ

С ТРЕМЯ ПЕРЕМЕННЫМИ

Цель:

Развить умение преобразования матриц;

Сформировать навыки решения системы 3 линейных уравнений с тремя переменными методом Крамера ;

Закрепить знания о свойствах определителей 2 и 3 порядка;

Материально – техническое обеспечение: методические указания по выполнению работы;

Время выполнения: 2 академических часа;

Ход занятия:

    Изучить краткие теоретические сведения;

    Выполнить задания;

    Сделать вывод по работе;

    Подготовить защиту работы по контрольным вопросам.

Краткие теоретические сведения:

Матрицей называется квадратная или прямоугольная таблица , заполненная числами . Эти числа называются элементами матрицы .

Элементы матрицы , расположенные по горизонталям , образуют строки матрицы . Элементы матрицы , расположенные по вертикалям , образуют столбцы матрицы .

Строки нумеруются слева направо , начиная с номера 1, столбцы нумеруются сверху вниз , начиная с номера 1.

Матрица A , имеющая m строк и n столбцов , называется матрицей размера m на n и обозначается А m∙n . Элемент a i j матрицы A = { a ij } стоит на пересечении i - ой строки и j- го столбца .

Главной диагональю квадратной матрицы называется диагональ, ведущая из левого верхнего угла матрицы в правый нижний угол. Побочной диагональю квадратной матрицы называется диагональ, ведущая из левого нижнего угла матрицы в правый верхний угол.

Две матрицы считаются равными, если они имеют одинаковую размерность и их соответствующие элементы равны.

Каждую матрицу можно умножить на любое число, причем, если k – число, то k A ={ k a ij }.

Матрицы одного и того же размера A m ∙n и B m∙ n можно складывать, причем A m ∙n + B m∙ n = { a ij + b i j }.

Операция сложения матриц обладает свойствами A + B = B + A , A +( B + C ) = ( A + B ) + C .

Пример 1. Выполнив действия над матрицами, найдите матрицу С= 2A - B, где, .

Решение.

Вычислим матрицу 2A размерности 3x3:

Вычислим матрицу С = 2A - В размерности 3x3:

C = 2 A - B .

Определителем матрицы третьего порядка называется число, определяемое равенством:

.

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Каждое слагаемое состоит из произведения трех сомножителей.

Рис.1.1. Рис.1.2.

Знаки, с которыми члены определителя входят в формулу нахождения определителя третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из рисунка (1.1.), а последующие три слагаемые берутся со знаком минус и определяются из рисунка (1.2).

Пример 2. Вычислить определитель третьего порядка по правилу Сарруса:

Решение:

Пример 3. Вычислить определитель третьего порядка методом разложения по элементам первой строки:

Решение:

Используем формулу:

3 -2 +2 = 3(-5 + 16) – 2(1+32) + 2(2 +20) = 33 – 66 + 44 = 11.

Рассмотрим основные свойства определителей:

    Определитель с нулевой строкой (столбцом) равен нулю.

    Если у матрицы умножить любую строку (любой столбец) на какое-либо число, то определитель матрицы умножится на это число.

    Определитель не меняется при транспонировании матрицы.

    Определитель меняет знак при перестановке любых двух строк (столбцов) матрицы.

    Определитель матрицы с двумя одинаковыми строками (столбцами) равен нулю.

    Определитель не меняется, если к какой-нибудь строке прибавить любую другую строку, умноженную на любое число. Аналогичное утверждение справедливо и для столбцов.

Свойства матриц и определителей широко применяют при решении системы трёх линейных уравнений с тремя неизвестными:

,

где х 1 , х 2 , х 3 – переменные, а 11 , а 12 ,…, а 33 - числовые коэффициенты. Следует помнить, что при решении системы возможен один из трёх вариантов ответа:

1) система имеет единственное решение – (х 1 ; х 2 ; х 3 );

2) система имеет бесконечно много решений (не определена);

3) система не имеет решений (несовместна).

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными методом Крамера, который позволяет найти единственное решение системы, опираясь на умение вычислять определители третьего порядка:

Пример 3. Найти решение системы трёх линейных уравнений с тремя неизвестными по формулам Крамера:

Решение. Находим определители третьего порядка, используя правило Сарруса или разложение по элементам первой строки :

Находим решение системы по формулам:

Ответ: (- 152; 270; -254)

Задания для самостоятельного выполнения:

I . Найти матрицу преобразования.

II . Вычислить определитель III порядка.

III . Решить систему методом Крамера .

Вариант 1.

1. C = A +3 B , если, . 2. .

Вариант 2.

1. C =2 A - B ,если, . 2. .

Вариант 3.

1. C = 3 A + B , если, . 2. .

Вариант 4.

1. C = A - 4 B , если, . 2. .

Вариант 5.

1. C = 4 A - B , если, . 2. .

Вариант 6.

1. C = A +2 B , если, . 2. .

Вариант 7.

1. C =2 A + B , если, . 2. .

Вариант 8.

1. C =3 A - B , если, . 2. .

Вариант 9.

1. C = A - 3 B , если, . 2. .

Вариант 10.

1. C = A - 2 B , если, . 2. .

Вариант 11.

1. C = A +4 B , если, . 2. .

Вариант 12.

1. C =4 A + B , если, . 2. .

Вариант 13.

1. C = A +3 B , если, . 2. .

Вариант 14.

1. C =2 A - B , если, . 2. .

Вариант 15.

1. C =3 A + B , если, . 2. .

Вопросы для самоконтроля:

    Что называется матрицей?

    Правила вычисления определителей третьего порядка?

    Запишите формулы Крамера для решения системы трёх линейных уравнений с тремя переменными.

Система линейных уравнений имеет вид

где - коэффициенты; - свободные члены; - неизвестные величины.

Решением этой системы называется совокупность чисел которые, будучи подставлены вместо неизвестных в уравнения, обращают эти уравнения в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение. Если же система не имеет ни одного решения, то она называется несовместной.

Совместная система называется определенной, если она имеет только одно решение, и неопределенной, если она имеет более одного решения.

называются соответственно матрицей и расширенной матрицей системы (2).

Теорема Кронекера-Капелли. Для совместности системы (2) необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу расширенной матрицы:

Правило Крамера. Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы (2) совпадает с числом уравнений и матрица системы невырожденная то система имеет единственное решение, которое находится по правилу Крамера:

В этих формулах - определитель системы, а - определитель, полученный из определителя системы заменой столбца столбцом свободных членов

Матричное решение системы. Система линейных уравнений (2) может быть записана в матричной форме

где А - матрица системы; X - матрица-столбец неизвестных; В - матрица-столбец свободных членов. Если матрица А квадратная и невырожденная, то решение системы (3) может быть записано в матричной форме:

Равносильные системы уравнений. Две системы линейных уравнений называются равносильными, если множества их решений совпадают. Нахождение решений системы линейных уравнений основано на переходе к равносильной системе, которая проще исходной. Укажем простейшие операции, которые приводят к равносильной системе:

1) перемена местами двух уравнений в системе;

2) умножение какого-либо уравнения системы на действительное число (отличное от нуля);

3) прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Неизвестное называется разрешенным или базисным, если какое-нибудь уравнение системы содержит его с коэффициентом 1, а во все остальные уравнения не входит.

Если каждое уравнение системы содержит разрешенное неизвестное, то такая система называется разрешенной. Ее неизвестные, не являющиеся базисными, называются свободными.

Для отыскания всех решений совместной системы линейных уравнений достаточно найти равносильную ей разрешенную систему. Если все неизвестные окажутся базисными, то разрешенная система дает значения этих неизвестных, составляющие единственное решение исходной системы. В противном случае выражают базисные неизвестные через свободные.

Метод Жордана - Гаусса. Запишем систему линейных уравнений (2) в виде таблицы

Жордановым преобразованием системы с разрешающим элементом называется следующая последовательность действий:

1) умножение строки таблицы на число ;

2) прибавление к первой строке таблицы ее строки (полученной после первого действия), умноженной на -

3) прибавление ко второй строке строки, умноженной на - и т. д.

После этих преобразований неизвестное станет разрешенным, все коэффициенты столбца будут равны нулю, кроме

Проводя последовательно жордановы преобразования с разрешающими элементами, взятыми в различных строках, получим разрешенную систему, равносильную исходной.

Если в результате преобразований все коэффициенты при неизвестных в какой-нибудь строке окажутся равными нулю, а свободный член этой строки не будет равным нулю, то данная система уравнений несовместна. Если же получится строка, состоящая из одних нулей, то она вычеркивается из таблицы.

Пример 1. Решить систему уравнений

Решение. Запишем эту систему в виде таблицы и проведем ее преобразование к разрешенному виду в шесть шагов.

Задача 1

Решить систему линейных уравнений двумя способами: по формулам Крамера и методом Гаусса

1) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Крамера

Определитель системы D не равен нулю. Найдем вспомогательные определители D 1 , D 2 , D 3 , если они не равны нулю, то решений нет, если равны, то решений бесконечное множество


Система 3 линейных уравнений с 3 неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам:

Ответ: получили решение:

2) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Гаусса

Составим расширенную матрицу системы

Примем первую строку за направляющую, а элемент а 11 = 1 – за направляющий. С помощью направляющей строки получим нули в первом столбце.

соответствует множество решений системы линейных уравнений

Ответ: получили решение:

Задача 2

Даны координаты вершин треугольника АВС

Найти:

1) длину стороны АВ;

4) уравнение медианы АЕ;

Построить заданный треугольник и все линии в системе координат.

А(1; -1), В(4; 3). С(5; 1).

1) Расстояние между точками А(х 1 ; у 1 ) и В(х 2 ; у 2 ) определяется по формуле

воспользовавшись которой находим длину стороны АВ;

2) уравнения сторон АВ и ВС и их угловые коэффициенты;

Уравнение прямой, проходящей через две заданные точки плоскости А(х 1 ; у 1 ) и В(х 2 ; у 2 ) имеет вид

Подставляя в (2) координаты точек А и В, получаем уравнение стороны АВ:

Угловой коэффициент k АВ прямой АВ найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b .

, то есть откуда

Аналогично получим уравнение прямой ВС и найдем ее угловой коэффициент.

Подставляя в (2) координаты точек В и С, получаем уравнение стороны ВС:

Угловой коэффициент k ВС прямой ВС найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b .

, то есть

3) внутренний угол при вершине В в радианах с точностью до 0,01

Для нахождения внутреннего угла нашего треугольника воспользуемся формулой:

Отметим, что порядок вычисления разности угловых коэффициентов, стоящих в числителе этой дроби, зависит от взаимного расположения прямых АВ и ВС.

Подставив ранее вычисленные значения k ВС и k АВ в (3), находим:

Теперь, воспользовавшись таблицами инженерным микрокалькулятором, получаем В » 1,11 рад.

4) уравнение медианы АЕ;

Для составления уравнения медианы АЕ найдем сначала координаты точки Е, которая лежит на середине отрезка ВС

Подставив в уравнение (2) координаты точек А и Е, получаем уравнение медианы:


5) уравнение и длину высоты CD;

Для составления уравнения высоты CD воспользуемся уравнением прямой, проходящей через заданную точку М(х 0 ; у 0 )с заданным угловым коэффициентом k , которое имеет вид

и условием перпендикулярности прямых АВ и CD, которое выражается соотношением k AB k CD = -1, откуда k CD = -1/k AB = - 3/4

Подставив в (4) вместо k значение k С D = -3/4, а вместо x 0 , y 0 ответствующие координаты точки С, получим уравнение высоты CD

Для вычисления длины высоты СD воспользуемся формулой отыскания расстояния d от заданной точки М(х 0 ; у 0 ) до заданной прямой с уравнением Ax+ By + С = 0 , которая имеет вид:

Подставив в (5) вместо х 0 ; у 0 координаты точки С, а вместо А, В, С коэффициенты уравнения прямой АВ, получаем

6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;

Так как искомая прямая EF параллельна прямой АВ, то k EF = k AB = 4/3. Подставив в уравнение (4) вместо х 0 ; у 0 координаты точки Е, а вместо k значение k EF получаем уравнение прямой EF".

Для отыскания координат точки М решаем совместно уравнения прямых EF и CD.

Таким образом, М(5,48; 0,64).

7) уравнение окружности с центром в точке Е, проходящей через вершину В

Поскольку окружность имеет центр в точке Е(4,5; 2) и проходит через вершину В(4; 3), то ее радиус

Каноническое уравнение окружности радиуса R с центром в точке М 0 (х 0 ; у 0 ) имеет вид

Треугольник АВС, высота СD, медиана AE, прямая EF , точка M и окружность построенная в системе координат x0у на рис.1.

Задача 3

Составить уравнение линии, для каждой точки которой ее расстояние до точки А (2; 5) равно расстоянию до прямой у = 1. Полученную кривую построить в системе координат

Решение

Пусть М (x , у ) - текущая точка искомой кривой. Опустим из точки М перпендикуляр MB на прямую у = 1 (рис.2). Тогда В(х; 1). Так как МА = MB , то



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта