Главная » Водоснабжение » Биология молекула днк. Строение и функции молекул ДНК и РНК

Биология молекула днк. Строение и функции молекул ДНК и РНК

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.









Уотсон и Крик показали, что ДНК состоит из двух полинуклеотидных цепей. Каждая цепь закручена в спираль вправо, и обе они свиты вместе, т. е. закручены вправо вокруг одной и той же оси, образуя двойную спираль.

Цепи антипараллельны, т. е. направлены в противоположные стороны. Каждая цепь днк состоит из сахарофосфатного остова, вдоль которого перпендикулярно длинной оси двойной спирали располагаются основания; находящиеся друг против друга основания двух противоположных цепей двойной спирали связаны между собой водородными связями.

Сахарофосфатные остовы двух цепей двойной спирали хорошо видны на пространственной модели ДНК. Расстояние между сахарофосфатными остовами двух цепей постоянно и равно расстоянию, занимаемому парой оснований, т. е. одним пурином и одним пиримидином. Два пурина занимали бы слишком много места, а два пиримидина - слишком мало для того,чтобы заполнить промежутки между двумя цепями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой, чем и объясняется обнаруженная на рентгенограммах периодичность. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований. Никаких ограничений относительно последовательности нук-леотидов в одной цепи не существует, но в силу правила спаривания оснований эта последовательность в одной цепи определяет собой последовательность нуклеотидов в другой цепи. Поэтому мы говорим, что две цепи двойной спирали комплементарны друг другу.

Уотсон и Крик опубликовали сообщение о своей модели ДНК в журнале « » в 1953 г., а в 1962 г. они вместе с Морисом Уилкинсом были удостоены за эту работу Нобелевской премии. В том же году получили Нобелевскую примию Кендрью и Перуц за свои работы по определению трехмерной структуры белков, также выполненные методом рентгеноструктурного анализа. Розалинду Франклин, умершую от рака ранее присуждения этих премий, не включили в число лауреатов, поскольку Нобелевская премия посмертно не присуждается.


Для того чтобы признать предложенную структуру генетическим материалом, требовалось показать, что она способна: 1) нести в себе закодированную информацию и 2) точно воспроизводиться (реплицироваться). Уотсон и Крик отдавали себе отчет в том, что их модель удовлетворяет этим требованиям. В конце своей первой статьи они сдержанно отметили: «От нашего внимания не ускользнуло, что постулированное нами специфическое спаривание оснований сразу же позволяет постулировать и возможный механизм копирования для генетического материала».

Во второй статье, опубликованной втом же 1953 г., они обсудили выводы, которые следовали из их модели, в генетическом плане. Это открытие, показавшее, сколь явно структура может быть связана с функцией уже на молекулярном уровне, дало мощный толчок развитию молекулярной биологии.

В данной статье вы сможете узнать биологическую роль ДНК. Итак, данная аббревиатура всем знакома еще со школьной скамьи, но далеко не все имеют представление, что это такое. В памяти после школьного курса биологии остаются минимальные знания по генетике и наследственности, так как эту сложную тему детям дают только поверхностно. Но эти знания (биологическая роль ДНК, оказываемое влияние на организм) могут быть невероятно полезными.

Начнем с того, что нуклеиновые кислоты выполняют важную функцию, а именно - обеспечивают непрерывность жизни. Эти макромолекулы представлены в двух формах:

  • ДНК (DNA);
  • РНК (RNA).

Они являются передатчиками генетического плана строения и функционирования клеток организма. Поговорим о них более подробно.

ДНК и РНК

Начнем с того, какая отрасль науки занимается такими сложными вопросами, как:

  • изучение принципов хранения ;
  • ее реализация;
  • передача;
  • изучение структуры биополимеров;
  • их функции.

Все это изучается молекулярной биологией. Именно в этой отрасли биологических наук можно найти ответ на вопрос о том, какова биологическая роль ДНК и РНК.

Эти высокомолекулярные соединения, образованные из нуклеотидов, имеют название "нуклеиновые кислоты". Именно здесь хранится информация об организме, которая определяет развитие особи, рост и наследственность.

Открытие дезоксирибонуклеиновой и приходится на 1868 год. Тогда ученым удалось обнаружить их в ядрах лейкоцитов и сперматозоидах лося. Последующее изучение показало, что ДНК можно обнаружить во всех клетках растительной и животной природы. Модель ДНК была представлена в 1953 году, а Нобелевская премия за открытие вручена в 1962 году.

ДНК

Начнем этот раздел с того, что всего выделяется 3 типа макромолекул:

  • дезоксирибонуклеиновая кислота;
  • рибонуклеиновая кислота;
  • белки.

Сейчас мы более подробно рассмотрим строение, биологическую роль ДНК. Итак, этот биополимер передает данные о наследственности, особенностях развития не только носителя, но и всех предыдущих поколений. - нуклеотид. Таким образом, ДНК является главным компонентом хромосом, содержащим генетический код.

Как становится возможной передача этой информации? Все дело заключается в умении этих макромолекул самовоспроизводиться. Число их бесконечно, что можно объяснить большими размерами, а как следствие - огромным количеством всевозможных последовательностей нуклеотидов.

Структура ДНК

Для того чтобы понять биологическую роль ДНК в клетке, необходимо ознакомиться со структурой данной молекулы.

Начнем с самого простого, все нуклеотиды в своей структуре имеют три компонента:

  • азотистое основание;
  • пентозный сахар;
  • фосфатную группу.

Каждый отдельный нуклеотид в молекуле ДНК содержит одно азотистое основание. Оно может быть абсолютно любым из четырех возможных:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин).

А и Г - пурины, а Ц, Т и У (урацил) - пирамидины.

Существует несколько правил соотношения азотистых оснований, именуемых правилами Чаргаффа.

  1. А = Т.
  2. Г = Ц.
  3. (А + Г = Т + Ц) можем перенести все неизвестные в левую сторону и получить: (А + Г)/(Т + Ц) = 1 (эта формула является наиболее удобной при решении задач по биологии).
  4. А + Ц = Г + Т.
  5. Величина (А + Ц)/(Г + Т) постоянная. У человека она равняется 0,66, а вот, например, у бактерии - от 0,45 до 2,57.

Строение каждой молекулы ДНК напоминает двойную закрученную спираль. Обратите внимание на то, что полинуклеотидные цепи при этом являются антипараллельными. То есть расположение нуклеотидных пар у одной цепи имеет обратную последовательность, чем у другой. Каждый виток этой спирали содержит целых 10 нуклеотидных пар.

Как же скрепляются между собой эти цепочки? Почему молекула прочная и не распадается? Все дело в водородной связи между азотистыми основаниями (между А и Т - две, между Г и Ц - три) и гидрофобном взаимодействии.

В завершение раздела хочется упомянуть о том, что ДНК являются самыми крупными органическими молекулами, длина которых варьируется от 0,25 до 200 нм.

Комплементарность

Остановимся более подробно на парных связях. Уже мы говорили о том, что пары азотистых оснований образуются не хаотичным характером, а в строгой последовательности. Так, аденин может связаться только с тимином, а гуанин - только с цитозином. Это последовательное расположение пар в одной цепи молекулы диктует расположение их в другой.

При репликации или удвоении для образования новой молекулы ДНК обязательно соблюдается данное правило, имеющее название "комплементарность". Можно заметить следующую закономерность, которую упоминали в сводке правил Чаргаффа - одинаково число следующих нуклеотидов: А и Т, Г и Ц.

Репликация

Теперь поговорим о биологической роли репликации ДНК. Начнем с того, что у данной молекулы есть эта уникальная способность к самовоспроизведению. Под этим термином понимается синтез дочерней молекулы.

В 1957 году было предложено три модели данного процесса:

  • консервативная (сохраняется исходная молекула и образуется новая);
  • полуконсервативная (разрыв исходной молекулы на моноцепи и присоединение комплементарных оснований к каждой из них);
  • дисперсная (распад молекулы, репликация фрагментов и сбор в случайном порядке).

Процесс репликации имеет три этапа:

  • инициация (расплетение участков ДНК при помощи фермента хеликазы);
  • элонгация (удлинение цепи путем присоединения нуклеотидов);
  • терминация (достижение необходимой длины).

У этого сложного процесса есть особенная функция, то есть биологическая роль - обеспечение точной передачи генетической информации.

РНК

Рассказали, в чем заключается биологическая роль ДНК, теперь предлагаем переходить к рассмотрению (то есть РНК).

Начнем этот раздел с того, что эта молекула имеет не менее важное значение по сравнению с ДНК. Мы ее можем обнаружить абсолютно в любом организме, клетках прокариот и эукариот. Данная молекула наблюдается даже в некоторых вирусах (речь идет об РНК-содержащих вирусах).

Отличительная особенность РНК - наличие одной цепи молекул, но, как и ДНК, она состоит из четырех азотистых оснований. В данном случае это:

  • аденин (А);
  • урацил (У);
  • цитозин (Ц);
  • гуанин (Г).

Все РНК делятся на три группы:

  • матричная, которую принято называть информационной (сокращение возможно двумя формами: иРНК или мРНК);
  • рибосомная (рРНК).

Функции

Разобравшись с биологической ролью ДНК, ее строением и особенностями РНК, предлагаем переходить к особым миссиям (функциям) рибонуклеиновых кислот.

Начнем с иРНК или мРНК, основной задачей которой является передача информации от молекулы ДНК к цитоплазме ядра. Также мРНК является матрицей для синтеза белка. Что касается процентного содержания этого вида молекул, то оно достаточно низкое (порядка 4 %).

А процентное содержание рРНК в клетке равняется 80. Они необходимы, так как являются основой рибосом. Рибосомная РНК принимает участие в синтезе белка и сборке полипептидной цепи.

Адаптер, выстраивающий аминокислоты цепи - тРНК, переносящий аминокислоты в область синтеза белка. Процентное содержание в клетке - порядка 15 %.

Биологическая роль

Подведем итог: какова биологическая роль ДНК? В момент открытия этой молекулы очевидной информации по этому поводу дать не могли, но и сейчас далеко не все известно о значении ДНК и РНК.

Если говорить об общебиологическом значении, то их роль заключается в передаче наследственной информации от поколения к поколению, синтезе белка и кодировке белковых структур.

Многие высказывают и такую версию: эти молекулы связаны не только с биологической, но и с духовной жизнью живых существ. Если верить мнению метафизиков, то в ДНК содержится опыт прошлых жизней и божественная энергия.

Пространственная модель ДНК

Рис. 5. Азотистые основания, входящие в состав нуклеиновых кислот

Американский биохимик Эрвин Чаргафф разработал точные методы определения количества азотистых оснований и установил характерные особенности химического состава нуклеиновых кислот. Это сыграло большую роль в познании молекулярной структуры ДНК. Им было установле­но, что азотистые основания, входящие в состав ДНК (рис. 5.5) и выделенные из клеток различных организмов (рис. 5.8) подчиняются закономерностям. Сумма пуриновых ос­нований (А + Г) все­гда равна сумме пиримидиновых (Ц + Т).

Рис. 5.6. Правило Чаргаффа

Рис. 5.7. Эрвин Чаргафф (1905-2002)

Рис. 5.8. Азотистые основания, выделенные из клеток различных организмов

В 1953 г. американский молекулярный биолог Джеймс Уотсон и английский физик и генетик Френсис Крик (рис. 5.9), основываясь на данных Э. Чаргаффа и М. Уилкинса, а также Розалинда Франклин (рис. 5.10) построили модель пространственной структуры молекулы ДНК. Это открытие было удостоено высшей научной на­грады - Нобелевской премии.

Рис. 5.9. Джеймс Уотсон и Френсис Крик (1953)

Рис. 5.10. Розалинда Франклин (1920-1958), английский биофизик и учёный-рентгенограф

В соответствии с моделью Дж. Уотсона и Ф. Крика молекула ДНК состоит из двух длинных комплементарных полинуклеотидных цепей, закрученных в правильную двойную спираль.

Диаметр двойной правозакрученной спирали ДНК составляет около 2 нм, один поворот спирали (шаг) – 3,4 нм. В каждом витке (шаге) спирали находится 10 пар нуклеотидов, расстояние между нуклеотидами равно 0,34 нм (рис. 5.11).

Рис. 5.11. Третичная структура ДНК

Скелетная основа полинуклеотидных цепей содержит правильно чередующиеся сахара и фосфаты, связанные ковалентными связями. Две углеводно-фосфатные цепи расположены на внешней стороне молекулы ДНК, в то время как азотистые основания находятся внутри ее, перпендикулярно оси спирали.

Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи.

Между гуанином и цитозином образуются три водородные связи.

Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении и называется комплементарностью (рис. 5.14).

Комплементарность – это пространственная взаимодополняемость молекул или их частей, приводящая к образованию водородных связей.

Комплементарность каждой отдельной пары оснований создаёт комплементарность двух полинуклеотидных цепей в целом.

Водородные связи возникают между пуриновым основанием од­ной цепи и пиримидиновым основанием другой цепи в результате избирательного спаривания оснований.

Соединение одного из пуринов (А или Г ) или пиримидинов (Ц или Т ) с остатком сахара образует нуклеозид .

После присоединения к нуклеозиду фосфатной группы возникает нуклеотид , содержащий основание, сахар и фосфатную группу. Фосфатная группа присоединяется к нуклеозиду, заменяя в дезоксирибозе группу ОН – в положении 5′ (рис. 5.12).

Рис. 5.12. Образование дезоксирибонуклеотида путём соединения фосфата, дезоксирибозы и азотистого основания

Нуклеотиды – это мономеры, из которых строится полинуклеотидная цепь. Соединение друг с другом двух нуклеотидов дает динуклеотиды , трех – тринуклеотиды , затем – тетрануклеотиды , и так вплоть до цепи из сотен тысяч нуклеотидов в виде длинных линейных, неразветвленных полинуклеотидов .

Полинуклеотидные молекулы РНК имеют молекулярную массу 1,5-2,0 млн. и состоят из 4-6 тыс. нуклеотидов. Полинуклеотиды ДНК – это обычно гигантские, органические молекулы, имеющие тысячи, миллионы и даже миллиарды нуклеотидов. Последовательность нуклеотидов в цепи молекулы является первичной структурой молекулы ДНК (рис. 5.13).

Рис. 5.13. Первичная структура ДНК. Схема соединения нуклеотидов в полинуклеотидную цепь

В молекулах ДНК две полинуклеотидные цепи имеют противоположное направление в отношении связей 5"–3" и 3"–5", т.е. они антипараллельны (рис. 5.14).

Таким образом, в структурной организации молекулы ДНК выделяют три уровня:
первичную структуру – последовательность нуклеотидов в полинуклеотидной цепи
вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями (рис. 5.14);

третичную структуру – трехмерную спираль с определёнными пространственными характеристиками (рис. 5.11).

Рис. 5.14. Вторичная структура ДНК

Водородные связи между парами комплементарных нуклеоти­дов (две для пары А-Т и три для пары Г-Ц) относительно непроч­ные.

Поэтому комплементарные нити молекулы ДНК могут разде­ляться и соединяться вновь при изменении некоторых условий (например, изменении температуры или концентрации солей).

Разделение двухцепочечной ДНК называется денатурацией , а об­ратный процесс - образование двухцепочечной структуры ДНК – гибридизацией .

Антисмысловая цепь имеет большое значение при стабилизации структуры двойной спирали ДНК и участвует в про­цессах репликации и репарации (восстановления) поврежденных участков ДНК.

Молекулы ДНК являются гигантскими полимера­ми. Единицами измерения длины молекулы приняты: пары нукле­отидов (п.н.). У человека гаплоидный набор содержит 3,2х10 9 пар нуклеоти­дов.

Почти вся ДНК клетки содержится в ядре в виде 46 плотно упакованных, суперскрученных за счет взаимодействий с ядерными белками, структурах - хромосомах. Сравнительно небольшая часть ДНК (около 5%) ло­кализована в митохондриях.

Репликация ДНК

При размножении зигота, образовавшаяся в результате слияния гамет, дает начало миллионам и миллиардам клеток тела. Каждая исходная молекула ДНК дает начало двум новым молекулам РНК, с сохранением в неизменном виде всех особенностей исходной молекулы.

Процесс удвоения ДНК, происходящий между процессами деления во вре­мя синтетической стадии интерфазы, носит название репли­кации . Во время репликации информация, закодированная в пос­ледовательности нуклеиновых оснований молекулы родительской ДНК, передается с максимальной точностью дочерним ДНК.

В 1956 г. А. Корнберг выделил фермент, который был способен связывать свободные нуклеотиды друг с другом, и дал ему назва­ние ДНК-полимераза.

Способ репликации, характерный для всех эукариот, в том числе и человека, известен под названием полуконсервативной реплика­ции (рис. 5.15).

В начале процесса репликации особый фермент - хеликаза расплетает родительскую ДНК на две нити, каждая из которых служит матрицей, определяющей последовательность новой, комплементарной цепи ДНК.

При полу­консервативной репликации дочерние клетки первого поколения получают только одну из нитей ДНК родительской клетки.

Вторая нить синтезируется заново, при этом она комплементарна роди­тельской цепи. Таким образом, только две из четырех до­черних клеток второго поколения содержат по одной цепи исход­ной родительской ДНК. Поскольку ДНК-полимераза катализирует репликацию только в одном направлении (5"®3"), непрерывно достраивается только одна новая цепь молекулы ДНК (смысловая). Вторая цепь (антисмысловая) синтезируется другой ДНК-полимеразой, движущейся в об­ратном направлении, в виде коротких участков ДНК (фрагменты Оказаки).

Затем эти фрагменты ДНК связываются в единую цепь ферментом ДНК-лигазой. Таким образом, репликация ДНК обеспечивает высочайшую точность воспроизведения генетической информации, заключенной в последовательности оснований ДНК и тем самым реализует основные функции ДНК - сохранение генетической информации и точное ее воспроизведение в ряду поколений.

Рис. 5.15. Полуконсервативный механизм репликации ДНК

По своему химическому строению ДНК (дезоксирибонуклеиновая кислота ) является биополимером , мономерами которого являются нуклеотиды . То есть ДНК - это полинуклеотид . Причем молекула ДНК обычно состоит из двух цепей, закрученных друг относительно друга по винтовой линии (часто говорят «спирально закрученных») и соединенных между собой водородными связями.

Цепочки могут быть закручены как в левую, так и в правую (чаще всего) сторону.

У некоторых вирусов ДНК состоит из одной цепи.

Каждый нуклеотид ДНК состоит из 1) азотистого основания, 2) дезоксирибозы, 3) остатка фосфорной кислоты.

Двойная правозакрученная спираль ДНК

В состав ДНК входят следующие: аденин , гуанин , тимин и цитозин . Аденин и гуанин относятся к пуринам , а тимин и цитозин - к пиримидинам . Иногда в состав ДНК входит урацил, который обычно характерен для РНК , где замещает тимин.

Азотистые основания одной цепи молекулы ДНК соединяются с азотистыми основаниями другой строго по принципу комплементарности: аденин только с тимином (образуют между собой две водородные связи), а гуанин только с цитозином (три связи).

Азотистое основание в самом нуклеотиде соединено с первым атомом углерода циклической формы дезоксирибозы , которая является пентозой (углеводом с пятью атомами углерода). Связь является ковалентной, гликозидной (C-N). В отличие от рибозы у дезоксирибозы отсутствует одна из гидроксильных групп. Кольцо дезоксирибозы формируют четыре атома углерода и один атом кислорода. Пятый атом углерода находится вне кольца и соединен через атом кислорода с остатком фосфорной кислоты. Также через атом кислорода у третьего атома углерода присоединяется остаток фосфорной кислоты соседнего нуклеотида.

Таким образом, в одной цепи ДНК соседние нуклеотиды связаны между собой ковалентными связями между дезоксирибозой и фосфорной кислотой (фосфодиэфирная связь). Образуется фосфат-дезоксирибозный остов. Перпендикулярно ему, навстречу другой цепочке ДНК, направлены азотистые основания, которые соединяются с основаниями второй цепочки водородными связями.

Строение ДНК таково, что остовы соединенных водородными связями цепочек направлены в разные стороны (говорят «разнонаправлены», «антипараллельны»). С той стороны, где одна заканчивается фосфорной кислотой, соединенной с пятым атомом углерода дезоксирибозы, другая заканчивается «свободным» третьим атомом углерода. То есть остов одной цепочки перевернут как бы с ног на голову относительно другой. Таким образом, в строении цепочек ДНК различают 5"-концы и 3"-концы.

При репликации (удвоении) ДНК синтез новых цепочек всегда идет от их 5-го конца к третьему, так как новые нуклеотиды могут присоединяться только к свободному третьему концу.

В конечном итоге (опосредованно через РНК) каждые идущие подряд три нуклеотида в цепи ДНК кодируют одну аминокислоту белка.

Открытие строения молекулы ДНК произошло в 1953 году благодаря работам Ф. Крика и Д. Уотсона (чему также способствовали ранние работы других ученых). Хотя как химическое вещество ДНК было известно еще в XIX веке. В 40-х годах XX века стало ясно, что именно ДНК является носителем генетической информации.

Двойная спираль считается вторичной структурой молекулы ДНК. У клетках эукариот подавляющее количество ДНК находится в хромосомах , где связана с белками и другими веществами, а также подвергается более плотной упаковке.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта