Главная » Фасад » Вращение земли вокруг оси. Фундаментальные исследования Влияние вращения земли на равновесие

Вращение земли вокруг оси. Фундаментальные исследования Влияние вращения земли на равновесие

Земля, вращаясь с запада на восток (если смотреть на нее со стороны Северного полюса), совершает полный оборот вокруг оси за 24 часа. Угловая скорость вращения всех точек Земли при этом одинакова (15° за час). Линейная скорость вращения точек зависит от того расстояния, которое они должны пройти за период суточного вращения Земли. Неподвижными на поверхности Земли остаются только точки выхода воображаемой оси - точки географических полюсов (Северного и Южного). С наибольшей скоростью (464 м/сек) вращаются точки на линии экватора, на линии большого круга, образованного пересечением Земли плоскостью, перпендикулярной оси вращения. Если мысленно пересечь Землю рядом параллельных экватору плоскостей, на земной поверхности появятся линии, имеющие направление запад - восток, называемые параллелями . Длина параллелей уменьшается от экватора к полюсам, соответственно уменьшается и линейная скорость вращения параллелей. Линейная скорость вращения всех точек на одной параллели одинакова.
При пересечении Земли плоскостями, проходящими через ось вращения Земли, на ее поверхности возникают линии, имеющие направление север - юг, меридианы (meridianus, лат. - полуденный). Линейная скорость вращения всех точек на одном меридиане неодинакова: от экватора к полюсам она уменьшается.
Убедительным доказательством вращения Земли вокруг оси служит опыт с качающимся маятником (опыт Фуко).
По законам механики всякое качающееся тело стремится сохранить, плоскость качания. Свободно подвешенный качающийся маятник не изменяет плоскости качания, а вместе с тем, если на поверхности Земли род маятником поместить круг с делениями, окажется, что по отношению к этому кругу (т. е. по отношению к поверхности Земли) положение плоскости качания маятника изменяется. Это может произойти только вследствие того, что поверхность Земли под маятником поворачивается. На полюсе кажущийся поворот плоскости качания маятника составит 15° за час, на экваторе положение плоскости качания маятника не изменяется, так как она все время совпадает с меридианом; на промежуточных широтах кажущийся поворот плоскости качания равен 15° sin φ в час (φ - географическая широта места наблюдения).
Отклоняющее действие вращения Земли (сила Кориолиса) - одно из важнейших следствий вращения Земли. Мы обычно ориентируем направление движения тел по отношению к сторонам горизонта (север, юг, восток, запад), т. е. по отношению к линиям меридианов и параллелей, забывая о том, что эти линии вследствие вращения Земли непрерывно изменяют свою ориентацию в мировом пространстве. Тело же, находящееся в движении, по закону инерции стремится сохранить направление и скорость своего движения относительно мирового пространства. Пусть, например, из точки А (в северном полушарии) в сторону Северного полюса запущена ракета (рис. 13). В момент запуска направление ее движения (AB) совпадает с направлением меридиана. Ho уже в следующий момент точка А в результате вращения Земли переместится вправо, в точку Б. Направление меридиана в пространстве изменится, меридиан отклонится влево. Ракета, наоборот, сохранит направление движения, наблюдателю же, следящему за ее движением, кажется, что под влиянием какой-то силы она отклонилась вправо. Нетрудно понять, что эта сила фиктивная, ибо ракета только кажется отклонившейся вследствие изменения направления меридиана, по которому наблюдатель ориентирует направление ее движения. Если тело двигается в северном полушарии с севера на юг, меридиан изменяет свое направление, перемещаясь влево, и наблюдатель видит движущееся тело отклоняющимся, так же как и при движении с юга на север, вправо.


Отклонение будет наибольшим на полюсах, так как там меридиан за сутки изменяет свое направление в мировом пространстве на 360°. От полюсов и экватору отклонение убывает, и на экваторе, где меридианы параллельны друг другу и их направление в пространстве не изменяется, отклонение равно 0.
В южном полушарии отклоняющее действие вращения Земли проявляется в отклонении движущихся тел влево.
От направления движения вправо в северном полушарии и влево в южном отклоняются тела, передвигающиеся в любом направлении.
Отклоняющая сила вращения Земли (сила Кориолиса), действующая на единицу массы (1 г), движущейся со скоростью V м/сек, выражается формулой F=2ω*v*sin φ, где φ - угловая скорость вращения Земли, φ - широта. Сила Кориолиса от направления движения тела не зависит и на скорость его не влияет.
Отклоняющее действие вращения Земли оказывает постоянное воздействие на направление движения всех тел на Земле, в частности оно существенно влияет на направление воздушных и морских течений.
Смена дня и ночи на Земле. Солнечные лучи освещают всегда только половину Земли, обращенную к Солнцу. Вращение Земли вокруг оси обусловливает быстрое перемещение солнечного освещения по земной поверхности с востока на запад, т. е. смену дня и ночи.

Если бы земная ось была перпендикулярна плоскости орбиты, светораздельная плоскость (плоскость, делящая Землю на освещенную и неосвещенную половины) делила бы все широты на две равные части и на всех широтах день и ночь были бы всегда равны. При наклонном положении оси к плоскости земной орбиты день и ночь могут быть равны на всех широтах только в тот момент, когда земная ось лежит в светораздельной плоскости и когда светораздельная линия (линия, образованная пересечением земной поверхности светораздельной плоскостью) проходит через географические полюса. Когда земная ось наклонена северным концом к Солнцу (рис. 14, а), светораздельная плоскость, пересекая земную ось в центре Земли, делит Землю на две половины так, что большая часть северного полушария оказывается освещенной, а меньшая попадает в тень, и, наоборот, большая часть южного полушария находится в тени. Если ось Земли наклонена к Солнцу южным концом (рис. 14, б), южное полушарие освещено больше, чем северное. Так как светораздельная линия и в том и в другом случае не проходит через географические полюса и делит все широты, кроме 0°, на две неравные части - освещенную и неосвещенную, день и ночь на всех широтах, кроме экватора, не равны. В том полушарии, которое наклонено к Солнцу, день длиннее ночи, в противоположном полушарии, наоборот, ночь длиннее дня. На тех широтах, которые не пересекаются светораздельной линией и на какое-то время оказываются полностью на освещенной или неосвещенной стороне Земли, в соответствующий период (до полугода на полюсах) смены дня и ночи не происходит. Если смена дня и ночи определяется вращением Земли около оси, а неравенство их - наклоном оси к земной орбите, то постоянное изменение продолжительности дня и ночи на всех широтах, кроме экватора, является результатом неизменного положения земной оси в пространстве при обращении Земли вокруг Солнца.

Министерство образования Российской Федерации. Государственное образовательное учреждение высшего профессионального образования

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «МЕХАНИКА»

ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Данное пособие входит в серию электронных учебных пособий по теоретической механике, разрабатываемых на кафедре механики СамГТУ.

Пособие предназначено для самостоятельного изучения студентами темы «Динамика относительного движения материальной точки».

Зав. кафедрой – д.т.н., проф. Я.М.Клебанов, Разработчики – Л.Б.Черняховская, Л.А.Шабанов.

Самара – 2008.

Переносное, относительное и абсолютное движение.

Рассмотрим движение точки М относительно двух систем отсчета, одна

из которых O 1 x 1 y 1 z 1 движется относительно другой, неподвижной,

отсчета Oxyz (рис.1).

Относительным

называется

движение

М относительно

подвижной системы отсчета O 1 x 1 y 1 z 1 .

Переносным

называется

движение,

совершаемое

подвижной

системой

неизменно

связанными

точками пространства относительно

неподвижной системы отсчета.

Абсолютным называется

движение точки по отношению x 1

к неподвижной системе отсчета O 1 x 1 y 1 z 1 .

Всем кинематическим характеристикам, относящимся к относительному движению, присваивается индекс r , кинематическим характеристикам переносного движения–индекс е.

Относительной скоростью V r называется скорость точки по отношению к подвижной системе отсчета.

Переносной скоростью V е называется скорость той точки, неизменно

связанной с подвижной системой отсчета, с которой в данный момент совпадает точка М , относительно неподвижной системы отсчета.

Абсолютная скорость V - это скорость точки относительно неподвижной системы отсчета. Аналогично определяются относительное

ускорение a r , переносное ускорение a e и абсолютное ускорение a .

Теорема о сложении скоростей. При сложном движении абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей.

V = Ve + Vr

Теорема о сложении ускорений. При сложном движении ускорение точки равно геометрической сумме переносного, относительного ускорений и ускорения Кориолиса.

a = a e + a r + a c

Полученное равенство выражает теорему Кориолиса:

Ускорение Кориолиса равно удвоенному векторному произведению переносной угловой скорости и относительной скорости точки.

a c = 2 ω е × V r

Модуль ускорения Кориолиса равен

а С = 2ω e V r sinα ,

где α - угол между векторами ω е и V r .

Направление a c определяется в соответствии с общим правилом

векторного произведения.

Ускорение Кориолиса равно нулю в следующих случаях:

1) когда ω е = 0, т.е. когда переносное движение является

поступательным,

2) когда V r = 0 , т.е. в случае относительного покоя,

3) когда угол α = 0, т.е. в тех случаях, когда вектора ω е и V r

параллельны.

О сновной закон относительного движения материальной точки .

Рассмотрим движение материальной точки относительно неинерциальной системы координат, т.е. относительно системы координат, движущейся произвольным образом относительно неподвижной.

В случае сложного движения точки абсолютное ускорение определяется по теореме Кориолиса:

Умножим равенство (1) на массу движущейся материальной точки:

m a = m a e + m a r + m a k .

Выделим в подученном равенстве слагаемое, характеризующее относительное движение материальной точки

ma r = ma − ma e − ma с

ma =

Где

В соответствии со вторым законом Ньютона заменим

равнодействующая всех сил, приложенных к материальной точке.

Введем обозначения:

Ф e = − m a e ,

Ф с = − m a с .

m a r =

Ф e + Ф с

Вектор Ф e = − m a e называется переносной силой инерции, вектор Ф с = − m a с - силой инерции Кориолиса.

Равенство (2) представляет собой основной закон относительного движения материальной точки:

Относительно неинерциальной (подвижной) системы отсчета материальная точка движется так, как будто к ней, кроме действующей силы, приложены переносная сила инерции и сила инерции Кориолиса.

Векторы Ф e и Ф с можно рассматривать как поправки ко второму закону

Ньютона для материальной точки, движение которой рассматривается относительно неинерциальной системы отсчета.

Частные случаи.

1 . Пусть подвижная система отсчета по отношению к инерциальной системе движется поступательно. В этом случае угловая скорость

переносного движенияω е = 0 , следовательно, будут равняться нулю ускорение Кориолиса и сила инерции Кориолиса: a с = 2 ω e × V r = 0 ,

Ф с = −m a с = 0.

Закон относительного движения материальной точки (2) принимает вид: m a r = F + Ф e

2. Пусть подвижная система отсчета движется поступательно прямолинейно и равномерно. При таком дви ижении a e = 0 , следовательно,

Ф e = − m a e = 0 . Кроме того, ω е = 0 , a с = 0 , Ф с = − m a с = 0. Тогда равенство (2) принимает вид:

ma r = F

Следовательно, основной закон относительного движения точки в этом случае совпадает с основным законом движения точки по отношению к

инерциальной системе отсчета. Отсюда вытекает принцип относительности, открытый Галилеем:

Никаким механическим экспериментом нельзя обнаружить, находится ли данная система отсчета в покое или совершает поступательное, равномерное, прямолинейное движение по отношению к инерциальной (неподвижной) системе отсчета.

Таким образом, все системы отсчета, движущиеся поступательно, равномерно и прямолинейно относительно инерциальной системы, являются инерциальными.

3. Условие относительного равновесия. В этом случае

V r = 0 и

a r = 0 , следовательно, a с = 2

ω e × V r

Фс = − m a с

Тогда уравнение (2) принимает вид:

Ф e = 0

Это уравнение называется уравнением относительного равновесия материальной точки.

Влияние вращения Земли на равновесие тел.

Рассмотрим силы, действующие на материальную точку М, подвешенную на нити (рис.2) и находящуюся в покое относительно Земли.

На точку М действует сила притяжения F, направленная к центру Земли, сила натяжения нити Т и сила переносная инерции Ф e = − m a e , направленная в сторону, противоположную нормальному ускорению точки

a e n , которое в свою очередь направлено по

радиусу вращения ОМ = r к оси вращения Земли.

ae n = ω 2 OM = ω 2 r.

При равновесии точки на поверхности Земли геометрическая сумма приложенных к точке сил и переносной силы инерции равна нулю:

F + T + Фe = 0.

О М Ф е

ω F

С ψ ϕ m g

направление вертикали в данном пункте поверхности Земли, а плоскость,

перпендикулярная силе Т , является горизонтальной плоскостью. Из

равенства (2.5) следует, что

Т = − (F + Фе )

Сила m g , равная по модулю и направленная противоположно силе Т ,

называется силой тяжести.

mg = − T = F + Фе .

Сила тяжести равна геометрической сумме силы земного притяжения

и силы инерции, обусловленной суточным вращением Земли.

Таким образом, вращение Земли учитывается при определении силы

тяжести, включением в нее переносной силы инерции.

Модуль силы инерции

Фе = mae n = mω 2 r .

Величина этой силы в виду малости значения ω 2

очень мала. Наибольшее

значение сила Ф е имеет на экваторе и составляет там 0,034% от

величины силы притяжения.

Влияние вращения Земли на движение тел у ее

поверхности

Рассмотрим движение материальной точки по меридиану с юга на север

(рис.3) и, так как переносная сила инерции включается в силу тяжести, то

проанализируем влияние на это движение

силы инерции Кориолиса. Ускорение

Кориолиса a C = 2 ω e × V r направлено по

параллели на запад, а сила инерции Кориолиса

направлена в противоположную сторону – на

восток. Следовательно, материальная точка

при своем движении будет отклоняться на

восток. Расчеты показывают, что сила

инерции Кориолиса мала по сравнению с

силой тяжести, поэтому в большинстве

инженерных расчетов, где скорость движения

невелика, силой инерции пренебрегают, и

систему, связанную с Землей, считают

инерциальной. Однако учет вращения Земли приобретает значение в тех

случаях, когда движение продолжается длительное время и действие силы

инерции Кориолиса накапливается. Этим обстоятельством объясняется то,

что в северном полушарии реки размывают правый берег, в южном – левый. Точно также в северном полушарии при движении по железной дороге давление на правый рельс больше, чем на левый.

Силу инерции Кориолиса также необходимо учитывать при стрельбе на дальние расстояния, например, при расчете траекторий межконтинентальных баллистических ракет.

Пример решения задачи на динамику относительного движения материальной точки.

Шарик массой m = 0,1 кг, прикрепленный к концу горизонтальной пружины, коэффициент жесткости которой с = 2 Н/м, находится в трубке, вращающейся с постоянной угловой скоростью ω = 4 1/c вокруг вертикальной оси z1 . Длина недеформированной пружины l0 = 0,2 м.

Определить уравнение относительного движения шарика, найти его координату, давление на стенку трубки, а также абсолютную скорость и абсолютное ускорение в момент времени t = 0,2 c.

Свяжем подвижную

Фс

систему отсчета Oxyz с

Фе

вращающейся трубкой,

направив ось х вдоль

ae n

трубки и поместив начало

координат в точке О

(рис.4), ось z совместим с

осью вращения трубки, ось

у проведем

перпендикулярно

плоскости Охz.

Движение шарика, принимаемого за материальную точку М, внутри трубки является относительным, переносным - вращательное движение трубки вокруг оси Oz. На точку действуют сила тяжести m g , сила упругости F , и реакция стенки трубки N .

Основной закон относительного движения точки:

ma r = mg + F + N + Фе + Фс , (а)

где Ф е = − m a e - переносная сила инерции; Ф с = − m a с - сила инерции Кориолиса.

Переносная сила инерции направлена противоположно переносному ускорению точки. Так как вращение трубки происходит с постоянной

угловой скоростью, то переносное ускорение является нормальным и

направлено по оси х к точке О . Следовательно, Ф е направлена по оси х вправо.

Нормальное ускорение точки равно: a e n = ω e 2 OM = ω e 2 x . Модуль Фе = ma е = m ω e 2 x .

Ускорение Кориолиса определяется векторным равенством a с = 2 ω e × V r ,

в соответствии с которым вектор a с в данном случае направлен

перпендикулярно плоскости Охz в положительном направлении оси Оу (рис.4), следовательно, сила инерции Кориолиса направлена за чертеж.

Модуль силы инерции Кориолиса равен Ф с = 2m ω e V r , так как векторы ω e и V r перпендикулярны.

Под действием силы инерции Кориолиса шарик будет прижиматься к задней стенке трубки, поэтому полную нормальную реакцию стенки разложим на две взаимно-перпендикулярные составляющие N y и N z .

N = N y + N z

Сила упругости равна коэффициенту жесткости пружины, умноженному на ее удлинение F = c l , и направлена в сторону, противоположную удлинению, величина которого l = c (x − l 0 ) .

Составим дифференциальное уравнение относительного движения шарика:

Ф e − F

x − c(x − l0 ) .

M ω e

После сокращения на m и элементарных преобразований получим

+ (m

−ω

) x = m l0

Подставим численные значения

x + 4 x = 4 .

Общее решение полученного дифференциального уравнения имеет вид:

х = х1 + х2 .

где х1 – общее решение соответствующего однородного дифференциального уравнения, х2 – частное решение дифференциального уравнения (б).

Составим характеристическое уравнение и найдем его корни:

r 2 + 4 r = 0 . r = ± 2 i .

Таким образом, общее решение однородного уравнения имеет вид

х1 =С1 соs 2t + C2 sin2t

Частное решение уравнения (б) находим в форме х2 = В. Здесь B-

постоянная величина. Подставим это значение в уравнение (б), учитывая,

что х 2 = 0 , получим В = 1.

Решение (в) дифференциального уравнения относительного движения

точки М принимает вид

х = С1 соs 2t + C2 sin2t +1.

Скорость этого движения

х = -2С1 sin2t +C2 cos2t .

Подставив начальные условия t = 0, х0 = 0,2 м,

0 в уравнения (г) и (д),

получим значения постоянных интегрирования:

С1 = - 0,8, С2 =0.

Уравнение относительного движения точки М принимает вид:

х = - 0,8 соs 2t +1.

X = 1,6sin 2t .

Скорость относительного движения шарика

Относительное ускорение

a r =

(1,6sin 2t ) = 3,2cos 2t .

При t = 0,2 c:

х = - 0,8соs 0,4 + 1 = - 0,8 cos 22,90 + 1 = 0,264. м. Vr = 1,6 sin 0,4 = 1,6 sin 22,90 = 1,024 м/c.

аr = 3,2 cos 0,4 =3,2 cos22,90 = 2,94 м/c.

Ускорение Кориолиса при t = 0,2 c. Равно ас =2 ωe Vr = 8,1 м/c.

Для определения составляющих реакции стенки трубки N y и N z запишем проекции векторного равенства (а) на оси у и z .

0 = Ny –Фс , 0 = Nz –mg, откуда Ny = Фс , Nz = mg.

Сила инерции Кориолиса

Фс = 2m ωe Vr = 2·0,1· 4 ·1,024 =0,81H. Следовательно, Ny = Фс = 0,81(Н), Nz = mg = 9,81(Н).

Реакция стенки трубки N = N y 2 + N z 2 = 0,81 2 + 0,981 2 = 1,2 H Абсолютная скорость шарика

V = Vе + Vr

Переносная скорость V e перпендикулярна ОМ и направлена в сторону вращения трубки.

Ve = ωe OM = ωe x = 4· 0,264 = 1,056 м/с.

Так как векторы V е и V r взаимно перпендикулярны, то модуль

Абсолютное ускорение шарика

a = a e + a r + a с .

Модуль переносного ускорения равен

ае = ωe 2 ОМ = ωe 2 х1 = 4,22 м/c.

Найдем проекции абсолютного ускорения на оси Ох и Оу:

ах = - ае + аr =-4,33 + 2,94 = - 2,39,

ау = аk = 8,44.

Модуль абсолютного ускорения равен

а = а х 2 + а у 2 = (− 1,39)2 + 8,442 = 8,55 м / с .

Контрольные вопросы.

1. Какая система отсчета называется инерциальной?

2. Какая система отсчета не является инерциальной?

3. Какое движение точки называется относительным?

4. Записать основной закон относительного движения точки.

5. Какое движение точки называется переносным?

6. Что называется переносной силой инерции?

7. Чему равна и как направлена переносная сила инерции, если переносное движение является поступательным?

8. Как определяется переносная сила инерции, если переносное движение является равномерным вращением вокруг неподвижной оси?

9. Что называется силой инерции Кориолиса?

10.Как направлен вектор угловой скорости?

11.Как направлена сила инерции Кориолиса?

12.Записать модуль силы инерции Кориолиса.

13.Записать дифференциальные уравнения движения материальной точки относительно системы координат, движущейся поступательно

14.Записать дифференциальные уравнения движения точки относительно системы координат, совершающей вращение вокруг неподвижной оси.

Как и другие планеты Солнечной системы, совершает 2 основных движения: вокруг собственной оси и вокруг Солнца. С древнейших времён именно на этих двух регулярных движениях основывались расчёты времени и способность составлять календари.

Сутки – это время вращения вокруг собственной оси. Год – обращения вокруг Солнца. Деление на месяцы также находится в прямой связи с астрономическими феноменами – их продолжительность связана с фазами Луны.

Вращение Земли вокруг собственной оси

Наша планета вращается вокруг собственной оси с запада на восток, то есть против часовой стрелки (если смотреть со стороны Северного полюса.) Ось – это виртуальная прямая линия, пересекающая земной шар в районе Северного и Южного полюсов, т.е. полюса имеют фиксированное положение и не участвуют во вращательном движении, в то время как все другие точки расположения на земной поверхности вращаются, причём скорость вращения не идентична и зависит от их положения по отношению к экватору – чем ближе к экватору, тем скорость вращения выше.

Например, в районе Италии скорость вращения составляет примерно 1200 км\ч. Следствиями вращения Земли вокруг своей оси являются смена дня и ночи и видимое движение небесной сферы.

Действительно, создаётся впечатление, что звёзды и другие небесные тела ночного неба движутся в противоположном нашему с планетой движению направлении (то есть с востока на запад).

Кажется, что звёзды находятся вокруг Полярной звезды, которая расположена на воображаемой линии – продолжении земной оси в северном направлении. Движение звёзд не является доказательством того, что Земля вращается вокруг своей оси, ведь это движение могло бы быть следствием вращения небесной сферы, если считать, что планета занимает фиксированное, неподвижное положение в пространстве.

Маятник Фуко

Неопровержимое доказательство того, что Земля вращается вокруг собственной оси, было представлено в 1851 г. Фуко, который провёл известнейший эксперимент с маятником.

Представим, что, находясь на Северном полюсе, мы привели в колебательное движение маятник. Силой извне, действующей на маятник, является гравитация, при этом она не влияет на изменение направления колебаний. Если подготовить виртуальный маятник, оставляющий следы на поверхности, мы сможем удостоверится, что через некоторое время следы переместятся в направлении часовой стрелки.

Это вращение может быть связано с двумя факторами: или с вращением плоскости, на которой совершает колебательные движения маятник, или с вращением всей поверхности.

Первую гипотезу можно отбросить, принимая во внимание, что на маятнике нет сил, способных изменить плоскость колебательных движений. Отсюда следует, что вращается именно Земля, причём она совершает движения вокруг собственной оси. Этот эксперимент был проведён в Париже Фуко, он использовал огромный маятник в виде сферы из бронзы весом около 30 кг, подвешенный к 67-метровому тросу. На поверхности пола Пантеона была зафиксирована отправная точка колебательных движений.

Итак, вращается именно Земля, а не небесная сфера. Люди, ведущие с нашей планеты наблюдение за небом, фиксируют движение и Солнца, и планет, т.е. во Вселенной движутся все объекты.

Критерий времени – сутки

Сутки – это отрезок времени, за который Земля совершает полный оборот вокруг собственной оси. Существует два определения понятия “сутки”. “Солнечный сутки” – это промежуток времени вращения Земли, при котором за отправную точку берётся . Другое понятие – “сидерические сутки” – подразумевает другую отправную точку – любую звезду. Продолжительность двух видов суток неидентична. Долгота сидерических суток составляет 23 ч 56 мин 4 с, долгота же солнечных суток равна 24 часам.

Различная продолжительность связана с тем, что Земля, вращаясь вокруг собственной оси, совершает и орбитальное вращение вокруг Солнца.

В принципе, продолжительность солнечных суток (хотя и принимается за 24 часа) – величина непостоянная. Это связано с тем, что движение Земли по орбите происходит с переменной скоростью. Когда Земля находится ближе к Солнцу, скорость её движения по орбите выше, по мере удаления от светила скорость понижается. В связи с этим введено такое понятие, как “средние солнечные сутки”, именно их продолжительность 24 часа.

Обращение вокруг Солнца со скоростью 107 000 км/ч

Скорость обращения Земли вокруг Солнца – второе основное движение нашей планеты. Земля движется по эллиптической орбите, т.е. орбита имеет форму эллипса. Когда находится в непосредственной близости от Земли и попадает в её тень, случаются затмения. Среднее расстояние между Землёй и Солнцем составляет примерно 150 миллионов километров. В астрономии используется единица измерения расстояний внутри Солнечной системы; её называют “астрономическая единица” (а.е.).

Скорость с которой Земля движется по орбите, равна примерно 107 000 км/ч.
Угол, образованный земной осью и плоскостью эллипса, составляет примерно 66°33’, это величина постоянная.

Если наблюдать за Солнцем с Земли, создаётся впечатление, что именно оно движется по небосклону в течении года, проходя через звёзды и , составляющие Зодиак. На самом деле Солнце также проходит и через созвездие Змееносца, но оно не относится к Зодиакальному кругу.

1

Байрашев К.А.

Получено точное решение задачи о влиянии вращения Земли на движение материальной точки в Северном полушарии без учета сопротивления воздуха при ненулевых начальных условиях. Рассмотрено несколько конкретных вариантов задания начальной скорости точки. Показано, что при начальной скорости, направленной на восток, отклонение точки на юг пропорционально первой степени угловой скорости вращения Земли. При начальной скорости, направленной на север или по отвесной линии вниз, отклонение точки на восток больше чем при падении без начальной скорости. Решение, полученное в работе, можно применить для оценки влияния вращения планет Солнечной системы на движение материальной точки вблизи их поверхностей.

1. Рассматривается задача о влиянии вращения Земли на падение тяжелой материальной точки в Северном полушарии, известная еще как задача об отклонении падающих тел на восток . Движение точки определяется относительно неинерциальной системы отсчета Оxyz , скрепленной с вращающейся Землей. Начало координат в общем случае располагается на некоторой высоте над сферической поверхностью Земли.

Ось Oz направлена по отвесу вниз, ось Оx - в плоскости меридиана к северу, ось Оy -по параллели к востоку (рис. 1).

При движении материальной точки вблизи поверхности Земли на нее действуют сила тяготения, переносная и кориолисова силы инерции. Сопротивление воздуха не учитывается. Заменяя сумму силы тяготения и переносной силы инерции силой тяжести , а кориолисову силу инерции формулой

Имеем следующее уравнение относительного движения материальной точки в векторной форме

(1)

Здесь m, и - соответственно масса, скорость и ускорение точки M, - вектор угловой скорости Земли, - ускорение силы тяжести.

Отметим, что скорость свободно падающей точки M , начинающей движении из состояния относительного покоя, почти параллельна отвесной линии. Поэтому корио-лисова сила инерции практически перпендикулярна плоскости меридиана и направлена на восток.

Проецируя (1) на координатные оси и следуя , получим систему обыкновенных дифференциальных уравнений 2-го порядка

(2)

где точки над x, y, z означают их производные по времени, φ - географическая широта места, т.е. угол отвесной линии с плоскостью экватора. Начальные условия следующие:

т.е. в начальный момент времени точка находится в относительном покое. В курсах теоретической механики обычно приводится приближенное решение задачи о влиянии вращения Земли на падение материальной точки без начальной скорости . В книге академика Н.А. Кильчевского дано точное решение системы уравнений, с точностью до знаков совпадающей с (2), при нулевых начальных условиях (3). В данной работе получено точное решение системы (2) при ненулевых начальных условиях (см. п. 4.). Предварительно решается задача (2) - (3) (см. п. 2.).

2. Интегрируя каждое из уравнений системы (2), находим

С учетом (3) получаем значения постоянных интегрирования: c 1 = c 2 = c 3 = 0.

Выражая из (4) через y и подставляя во второе уравнение системы (2), имеем

(5)

Дифференциальное уравнение (5) является линейным неоднородным. Следовательно, его решение

y = + Y,

где - общее решение однородного уравнения, Y - частное решение неоднородного уравнения . Корни характеристического уравнения

чисто мнимые Поэтому общее решение однородного уравнения

зависящее от двух постоянных интегрирования , можно записать в виде

Частное решение

где А и В неопределенные коэффициенты. Подставляя правую часть (6) в (5)

с учетом получим

Сокращая на 2ω и приравнивая друг к другу коэффициенты при первых степенях t и свободные члены, находим

Таким образом, а общее решение есть

Удовлетворяя начальному условию y 0 = 0, получаем c 1 * = 0. Условие дает

Следовательно,

(7)


Следует заметить, что в выражение для y содержит опечатку - во втором слагаемом коэффициент в знаменателе при ω 2 равен единице.

Подставляя правую часть (7) вместо у в первое и третье уравнения системы (4), интегрируя и удовлетворяя начальным условиям x 0 = z 0 = 0, получим

Ввиду того, что ориентация осей x и z противоположна принятой в , формулы (8)-(9) отличаются знаками от соответствующих формул, выведенных Н.А. Кильчевским.

Вычитая из (9) выражение (8) при будем иметь

Дифференцируя по времени получим

Опираясь на (8) легко доказать, что для движущейся точки Поэтому справедливо неравенство

(11)

Следовательно, при учете кориолисовой силы инерции вертикальная скорость падения точки меньше, чем без ее учета. Иначе говоря, неучет вращения Земли завышает вертикальную скорость падения точки по сравнению с действительной скоростью в пустоте. Этот вывод, представляющий только теоретический интерес, справедлив для всех φ из интервала Например, разница в расстояниях, пройденных точкой за 10с падения без учета и с учетом вращения Земли на широте φ=450 не превышает 5 . 10 -5 м , т.е. величина пренебрежимо малая.

3. Запишем решение задачи (2)-(3) в виде сходящихся рядов. Воспользуемся разложения

Подставляя правые части этих формул в (7)-(9), после преобразований получим

Полагая в (12) ω=0, имеем х=у=0, Этот же результат можно получить из (7)-(9) при ω→0.

,

Решение задачи (2), (13) можно получить способом, подробно изложенным в п. 2. В случае ненулевых начальных условий выкладки более громоздки, поэтому здесь они опускаются. Решение имеет вид

Подстановка в (2) соответствующих производных, полученных из (14) показывает, что каждое из уравнений системы обращается в тождество. Точно выполняются также начальные условия (13). Предполагается, что существует единственное решение задачи Коши для системы (2). Строго говоря, решение (14) должно хорошо согласовываться с опытными данными лишь в такой окрестности начальной точки M 0 (x 0 , y 0 , z 0 ) , где значения географической широты и ускорения силы тяжести мало отличаются от таковых в этой начальной точке. Чтобы расширить область решения, можно организовать зависящую от времени итерационную пошаговую процедуру, внося в (14) на очередном временнóм шаге поправки, учитывающие изменения φ , g и принимая за начальные условия соответствующие величины, рассчитанные на предыдущем шаге.

Нетрудно видеть, что при из (14) следуют равенства (7) - (9). Устремляя ω к нулю (ω →0), из (14) можно получить решение задачи при ненулевых начальных условиях без учета вращения Земли:

В этом случае траекторией точки является плоская кривая - парабола, поэтому обычно достаточно двух уравнений.

5. Рассмотрим еще шесть вариантов задания начальных условий, во всех из них для простоты полагаем x 0 = y 0 = z 0 = 0.

Вариант I. Пусть , т.е. начальная скорость направлена на восток. Тогда кориолисова сила инерции, действующая на точку в начальный момент времени, лежит в плоскости параллели и направлена от оси вращения Земли. Из (14), следуя подходу п. 3., оставляя явно только несколько первых членов рядов, получим

Точка отклоняется на восток и на юг (юго - восток).Формула (15) показывает, что отклонение траектории точки на юг пропорционально первой степени угловой скорости ω . Например, при t = 10c оно равно примерно 5 см. В отсутствии начальной скорости отклонение траектории точки на юг вследствие вращения Земли пропорционально квадрату угловой скорости. Этот известный результат следует из формулы для х системы (12).

Вариант II. Пусть , т.е. начальная скорость точки направлена на север, следовательно, кориолисова сила инерции, действующая на материальную точку при t=0, направлена на восток. Проведя такие же выкладки, как и в предыдущем случае будем иметь

Точка отклоняется на север и на восток (северо - восток). Из формулы (19) видно, что имеются два положительных слагаемых, пропорциональных первой степени угловой скорости ω, причем второе слагаемое появляется из - за начальной скорости, направленной на север. Следовательно, отклонение на восток больше, чем при падении точки в пустоте без начальной скорости. Такой вывод делается с учетом того, что угловая скорости вращения Земли малая по сравнению с единицей величина Поэтому членами, содержащими ω в степени выше второй при небольших t и υ 0 можно пренебречь.

Вариант III. Пусть , т.е. начальная скорость направлена по отвесу вниз. Кориолисова сила инерции за все время падения точки направлена на восток. Решение, полученное аналогично предыдущим двум вариантам, имеет вид

Из (21) видно, что отклонение точки на юг пренебрежимо малó. Формула (22) показывает, что как и в предыдущем варианте, отклонение точки на восток больше, чем при падении без начальной скорости.

Вариант IV. Пусть т.е. начальная скорость направлена на запад. Кориолисова сила инерции при t = 0 лежит в плоскости параллели и направлена к оси вращения Земли. Решение дается формулами (15 - 17) с учетом отрицательности знака . Если сумма первых двух слагаемых в (16) отрицательна, точка отклоняется в рассматриваемый момент времени на запад и на север (северо - запад), если положительна, то - на север и на восток (северо - восток). Чтобы последний случай имел место, необходимо свободное падение точки в течение сравнительно большого отрезка времени. Например, при g = 9,81 м/с точка должна падать более 77 с , т.е. с высоты более 29,1 км. Точка начинает падение в западном направлении, под действием кориолисовой силы инерции поворачивается вправо, пересекает плоскость меридиана и меняет направление на северо -восточное.

где знаки плюс и минус выбираются так же, как в (24) и (25).

Вариант V. Пусть т.е. начальная скорость направлена на юг. Кориолисова сила инерции при t=0 напралена на запад. Решение дается формулами (18) - (20) с учетом знака .

Вариант VI. Точка брошена вертикально вверх: . Кориолисова сила инерции при подъеме точки почти перпендикулярна плоскости меридиана и направлена на запад. В качестве решения можно использовать формулы (21) - (23), только нужно учитывать, что должны выполняться условия .

В этой работе предполагалось, как обычно принято, что точка расположена в Северном полушарии. Можно аналогично решить задачу о движении материальной точки в пустоте вблизи поверхности Земли в Южном полушарии.

Наконец, заметим, что формулы (14) -(23) можно применить для оценки влияния вращения планет Солнечной системы на движение материальной точки вблизи их поверхностей.

СПИСОК ЛИТЕРАТУРЫ

  1. Кильчевский Н.А. Курс теоретической механики, т. I (кинематика, статика, динамика точки). - 2-е изд. - М.: Наука, Главная редакция физико-математической литературы, 1977.
  2. Задачи и упражнения по математическому анализу. Под редакцией Демидовича Б.П. - М.: Наука, Главная редакция физико-математической литературы, 1978. - 480 с.

Библиографическая ссылка

Байрашев К.А. К ЗАДАЧЕ О ВЛИЯНИИ ВРАЩЕНИЯ ЗЕМЛИ НА ДВИЖЕНИЕ МАТЕРИАЛЬНОЙ ТОЧКИ // Фундаментальные исследования. – 2006. – № 10. – С. 9-15;
URL: http://fundamental-research.ru/ru/article/view?id=5388 (дата обращения: 15.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Земной шар совершает сложное движение: вращается около своей оси, движется по орбите вокруг Солнца. Вполне понятно, что Земля не является инерциальной системой отсчета. Тем не менее мы с успехом пользуемся законом Ньютона в земных условиях. Однако в ряде случаев неинерциальность Земли сказывается достаточно резко. Эти случаи мы должны изучить.

Влияние вращения Земли на ее форму. Вес тела.

Если не учитывать вращения Земли, то тело, лежащее на ее поверхности, следует рассматривать как поколщееся.

Сумма действующих на это тело сил равнялась бы тогда нулю. На самом же деле любая точка поверхности земного шара, лежащая на географической широте движется около оси земного шара, т. е. по кругу радиуса радиус Земли, рассматриваемой в первом приближении в виде шара), с угловой скоростью Следовательно, сумма сил, действующих на такую точку, отлична от нуля, равна произведению массы на ускорение и направлена вдоль

Очевидно, что наличие такой результирующей силы (рис. 13)

возможно лишь в том случае, если реакция земной поверхности и сила тяготения направлены под углом друг к другу. Тогда тело будет давить на поверхность Земли (по третьему закону Ньютона) с силой Если бы земной шар покоился, то эта сила равнялась бы силе тяготения и совпадала бы с ней по направлению.

Разложим силу на две: направленную вдоль радиуса и по касательной Наличие вращения Земли приводит, как мы видим из чертежа, к двум фактам. Во-первых, вес (давление тела на Землю) стал меньше силы тяготения. Так как то это уменьшение равно Во-вторых, возникает сила, стремящаяся расплющить Землю, передвинуть вещество к экватору; эта сила Такое расплющивание действительно имело место; Земля имеет не форму шара, а форму, близкую к эллипсоиду вращения. Экваториальный радиус Земли становится в результате указанного действия примерно на долю больше полярного радиуса.

Расплющивающие силы заставляли перемещаться массы земного шара до тех пор, пока он не принял равновесной формы. Когда процесс смещения закончился, расплющивающие силы, очевидно, перестали действовать. Следовательно, силы давления, действующие на поверхность земного «шара», направлены по нормали к поверхности.

Возвратимся теперь к величине давления тела на землю, то есть к той физической величине, которую принято называть весом. Вычисление, сделанное для шара (сила тяготения минус разумеется, несправедливо для истинной фигуры Земли. Однако для приближенных вычислений этим результатом можно пользоваться.

На полюсе вес тела равен силе тяготения. Обозначим через силу тяготения тела на полюсе. Тогда давление тела на земную поверхность в любой точке земного шара, иначе говоря, вес тела, будет равно, как сказано выше, разности силы тяготения и силы т. е.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта