Главная » Проектирование » Сервопривод. Сервоприводы с современными синхронными электродвигателями. Описание устройства и принципа работы сервопривода Общий вид блока управления сервомотором

Сервопривод. Сервоприводы с современными синхронными электродвигателями. Описание устройства и принципа работы сервопривода Общий вид блока управления сервомотором

Сейчас 11 гостей и ни одного зарегистрированного пользователя на сайте

В работе фрезеров используются два типа двигателя: шаговый – электромеханическое устройство, преобразующее сигналы в угловое перемещение ротора с фиксацией в заданном положении. И серводвигатели – имеющие обратную связь, и которыми можно управлять через цепь контроллера путём увеличения и уменьшения тока. Шаговые имеют меньшую мощность и скорость, и значительно дешевле серводвигателей.

Как правило, шаговый электродвигатель – это электромеханическое устройство, которое преобразует сигналы управления в угловое перемещение его ротора с качественной фиксацией в заданном положении. Сегодня современные шаговые двигатели (ШД), по сути, являются синхронными двигателями, не имеющими пусковую обмотку на роторе, что соответственно объясняется частотным пуском самого ШД. Последовательная активация обмоток двигателя порождает дискретные угловые перемещения (т. е. – шаги) ротора. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению.

Шаговый двигатель относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надежность и весьма внушительный срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.

Сегодня существуют три основных типа/вида шаговых двигателей:

  1. Гибридные двигатели – наиболее часто используемые во фрезерных станках с числовым программным управлением.
  2. Двигатели с постоянными магнитами.
  3. Двигатели, имеющие переменное магнитное сопротивление.

Гибридные шаговые двигатели

Считается, что гибридные двигатели совмещают в себе наилучшие черты ШД с переменным магнитным сопротивлением, а также двигателей с постоянными магнитами. У гибридного двигателя ротор имеет зубцы, которые расположены в осевом направлении. Шаговые гибридные двигатели обеспечивают более меньшую величину шага, большую скорость и больший момент, чем двигатели других типов/видов. Обычно, число шагов для гибридных двигателей может составлять от 100 до 400 (при этом угол шага 3.6 – 0.9о).

Строение шаговых двигателей

Шаговый электрический двигатель состоит из статора, где расположены обмотки возбуждения (т. е. катушки электромагнитов) и соответственно ротора с постоянными магнитами (также используются роторы с переменным магнитным сопротивлением – но реже). ШД с магнитным ротором позволяют обеспечивать фиксацию ротора при обесточенных обмотках и получать больший крутящий момент. Именно благодаря этому, шаговые двигатели достаточно часто применяются в станках с ЧПУ.

Достаточно высокая температура, которая создана в катушках, способна легко рассеяться через массу самого двигателя, таким образом, шаговые электродвигатели от нагрева менее подвержены повреждениям.

Принципы работы шагового двигателя

Как правило, в соответствии с тем, какие именно катушки статора выключены или включены, ротор будет вращаться, чтобы так сказать «подстроиться» к магнитному полю. Например, если представить ШД с двумя катушками в статоре, а в качестве ротора постоянный магнит, то когда соответствующие катушки статора достаточно возбуждены, постоянно намагниченный ротор обязательно повернется, чтобы с магнитным полем статора «выстроиться» в линию. Ротор останется в данном положении, если поле соответственно не вращается.

Когда к этой катушке не будет поступать энергия, а будет направлена непосредственно к следующей катушке, то ротор снова повернется, чтобы подстроиться к полю новоиспеченной позиции. При этом абсолютно каждый поворот обязательно соответствует углу шага, который в свою очередь может измениться от 180о до доли градуса (т. е. до 60о). Затем, в то время когда вторая катушка выключена, включается следующая. Это заставит повернуться ротор на следующий шаг, причем в том же направлении. Данный процесс продолжается до тех пор, пока одна катушка включается, а соответственно другая выключается.

Последовательность шести шагов возвратит ротор в то же состояние, какое было в самом начале последовательности. Теперь если представить, что при завершении первого шага, вместо включения одной катушки и выключения второй – обе катушки были бы включены. В таком случае, ротор повернется только лишь на 30о (т. е. всего на половину от 60о), чтобы выровняться в направлении наименьшего сопротивления. Таким образом, если первая катушка включена, в то время когда вторая выключена, ротор должен повернуться еще на 30о. Называется это действием полушага, что непосредственно включает последовательность восьми движений.

Во время противоположной последовательности выключений/включений, ротор будет совершать обороты в противоположном направлении. В промышленности наиболее применим именно шаговый мотор, который продвигается на угол от 1.8о и до 7.5,о при полном шаге. Для того чтобы размер шагов уменьшить, число полюсов необходимо увеличить. Однако при этом есть физический предел, сколько непосредственно полюсов могут использоваться.

Чтобы снизить дискретность перемещения ротора ШД применяется, как правило – микрошаговый режим. Непосредственно сам микрошаг реализуется при автономном управлении током обмоток шагового двигателя. Управляя соотношением токов находящихся в обмотках, ротор можно зафиксировать между шагами в промежуточном положении. Таким образом, можно увеличить плавность вращения ротора, а также достичь высокой точности позиционирования. Кроме того, в микрошаговом режиме разрешающую способность можно получить в 51200 шаг/об, что положительно отразиться на работе оборудования в целом.

Механическая характеристика шагового двигателя

Очень важной особенностью ШД является, конечно же, их механическая характеристика.

Управление шаговым приводом

Управление шаговым двигателем в самом общем виде сводится к задаче отработать обусловленное число шагов в потребном направлении и с необходимой скоростью.

На блок управления шагового двигателя (т. е. драйвер) подаются определенные сигналы «сделать шаг» - «задать направление». Эти сигналы представляют собой ничто иное как – импульсы 5В.

Данные импульсы можно получить непосредственно от компьютера, к примеру, от LPT-порта, от специализированного контроллера управления шаговыми приводами или же задавать сигналы независимо от генератора 5В или источника питания.

Как правило, работой ШД управляет электронная схема, а его питание выполняется от источника постоянного тока. ШД используют для управления частотой вращения, чтобы не применять дорой контур обратной связи. Данный привод применяется в приводе исключительно с разомкнутой цепью.

Серводвигатели

Серводвигатель – это непосредственно двигатель с обратной связью, которой можно управлять, чтобы или достичь требуемой скорости (следовательно, крутящего момента) или же получить необходимый угол поворота. Именно для этой цели устройство обратной связи посылает определенные сигналы в цепь контроллера серводвигателя, сообщая о скорости и соответственно угловом положении. Если в результате наиболее высоких нагрузок скорость окажется гораздо, ниже требуемой величины, то ток будет увеличиваться покуда скорость не достигнет потребной величины. Когда сигнал скорости показывает, что она больше, чем необходимо, то ток соответственно, уменьшается. Если же по положению применена обратная связь, то сигнал о нем используется, чтобы остановить двигатель в тот момент, когда непосредственно ротор приблизится к необходимому угловому положению.

Для этого могут использоваться разные типы/виды датчиков, включая кодирующие устройства, например, такие как: потенциометры, тахометры и резольверы. Если применяется датчик положения типа кодирующего устройства или потенциометра, его сигнал вполне может быть дифференцирован для того, чтобы выработать определенный сигнал о скорости.

На сегодняшний день сервоприводы используются в высокопроизводительном оборудовании, к примеру, в таких производственных отраслях как: изготовление различных стройматериалов, напитков, упаковки, в полиграфии и подъемно-транспортной технике. Также в последнее время наблюдается тенденция к умножению доли сервоприводов в пищевой промышленности и деревообработке.

Решающим фактором использования сервоприводов является не только высокая их динамика, но и возможность получить высокостабильное или точное управление, широкий диапазон регулирования скорости, малые габариты и вес, а также помехоустойчивость.

Принципы работы серводвигателя

Серводвигатели функционируют вместе с устройствами, которые называются преобразователи (приводы или драйвера серводвигателей). Данные преобразователи меняют напряжение на обмотке возбуждения (или на якоре) сервомотора в зависимости от непосредственной величины напряжения на входе самого двигателя. Вся эта система, как правило, управляется стойкой ЧПУ (СNC). Далее схематично представлена система с сервомотором. Непосредственно под «усилителем» понимается драйвер серводвигателя.

К примеру, в программе, которая заложена в стойке ЧПУ, присутствует особая команда «на расстояние в 10 мм - переместиться по оси Y». На вход драйвера сервомотора со стойки ЧПУ подается определенное напряжение. Серводвигатель начинает вращать ходовой винт, соединенный с энкодером и порталом станка (т. е. перемещаемая часть со шпинделем). При вращении ходового винта энкодер вырабатывает определенные импульсы, которые подсчитывает стойка.

Математическое обеспечение стойки ЧПУ, как правило, устроено таким образом, что стойка «располагает сведениями», что: расстоянию в 10 мм соответствует, к примеру, 10 000 импульсов от энкодера. Следовательно, пока стойка станка не примет эти 10 000 импульсов, то на вход драйвера будет передаваться напряжение задания, то есть будет вырабатываться – рассогласование. Когда портал станка пройдет заданные 10 мм, стойка станка свои 10000 импульсов получает в полном объеме, поэтому напряжение на входе драйвера серводвигателя станет равным (0) «нулю», двигатель остановится, и станок отлично отработает строго 10 мм (причем при абсолютном отсутствии люфтов).

Если под каким-либо воздействием произойдет смещение портала станка – энкодер сразу выдаст импульсы. Данные импульсы будут сосчитаны стойкой, а затем она выдаст напряжение рассогласования непосредственно на драйвер, который повернет якорь двигателя на очень малый угол, чтобы рассогласование равнялось нулю. Таким образом, портал станка отлично удерживается возле заданной ему точки с достаточно высокой точностью.

Также нужно заметить, что далеко не каждый двигатель может поворачиваться на очень малые углы, обеспечивать нужный крутящий момент, динамику разгона и т. д. Это основная причина из-за чего сервоприводы относятся к дорогостоящим устройствам.

Синхронные серводвигатели

Синхронные серводвигатели – трехфазные синхронные электродвигатели с датчиком положения ротора, (т. е. AC-двигатели) и возбуждением от постоянных магнитов. Основным их достоинством является достаточно низкий момент инерции ротора по отношению к крутящему моменту, что в свою очередь позволяет реализовать высокое быстродействие. Всего лишь за десятки миллисекунд достигается разгон на номинальную частоту вращения и реверс с полной скоростью в пределах 1-го оборота вала двигателя.

Как правило, основная область применения данных двигателей является приводы подач станков, а также технологические установки с временным циклом менее 1 секунды (к примеру, быстродействующие позиционные системы самодействующих складов, производство упаковки).

Для сервоприводов характерны такие показатели как:

  • управление по моменту, по скорости или по позиции;
  • статическая точность поддержания скорости непосредственно по валу двигателя не более чем 0,01%;
  • диапазон регулирования скорости более чем в 1:1000;
  • точность поддержания позиции по валу двигателя менее ± 10;
  • компактные размеры и низкий вес:

1 - разъем для подключений;
2 - статор с обмоткой;
3 - датчик скорости и положения;
4 - ротор с магнитами;
5 - электромагнитный тормоз.

  • отсутствие и бесконтактность узлов, требующих обслуживания;
  • достаточно высокое быстродействие;
  • значительная перегрузочная способность по моменту (т. е. кратность предельного момента кратковременно может превысить 3);
  • практически неограниченный диапазон (1:10 000 и более) для регулирования частоты вращения;
  • показатели кпд вентильных двигателей, как правило, превышают 90%, при изменении мощности нагрузки двигателя, при колебаниях напряжения питающей электросети меняются очень несущественно, в отличие от асинхронных электродвигателей, где максимальный кпд не превышает и 86%, а также, напрямую зависит от изменений нагрузки;
  • достаточно низкий перегрев вентильного электродвигателя, потому как на роторе двигателя отсутствует обмотка, что существенно увеличивает его срок службы, работающего в режиме учащенных перегрузок;
  • довольно-таки большая плотность момента на одну единицу массы электродвигателя.

Шаговые двигатели или серводвигатели: выбор двигателей для фрезерно-гравировального станка

Прежде всего, нужно сравнить два вида этих моторов по некоторым параметрам:

Срок службы и обслуживания

Шаговые двигатели – бесщеточные, поэтому единственными изнашиваемыми деталями в конструкции являются подшипники (изначально очень надежная конструкция). Это позволяет считать их двигателями высокой надежности и не требующих обслуживания долгий срок.

Дешевые модели сервоприводов коллекторного типа (со щетками) менее надежны, чем шаговые двигатели и требуют замены щеток примерно через 5000 часов непрерывной работы.

Большинство современных бесколлекторных сервоприводов от известных японских производителей отличаются высокой надежностью (близкой к надежности шаговых двигателей).

Порча подшипников происходит очень редко. Может сгореть обмотка статора. Дешевле купить новый двигатель.

Ремонтопригодны только самые дорогие модели. Проще двигатель сразу менять.

Точность перемещений

При хорошей механике точность не ниже +/- 0.01 мм

У высококачественных сервоприводов точность не ниже +/- 0.002 мкм. Такая точность достижима в случае использования сервоприводов контурного управления (точно обрабатывающих заданную траекторию). Нельзя использовать сервопривода для позиционного управления, так как они иногда дают погрешность значительно превышающую, погрешность в шаговых двигателях!

Скорость перемещения, мощность

В гравировально-фрезерных станках используя шаговые двигатели можно добиться скорости 20 – 25 метров в минуту. При увеличении скорости шаговые двигатели сильно теряют в крутящем моменте.

С использованием сервоприводов в станках с ЧПУ возможно достижение скоростей до 60 м/мин и более.

Скорость разгона

до 120 об/мин за секунду

до 1000 об/мин за 0,2 секунды

Эффект потери шагов при повышении скорости и нагрузки

На скоростях выше номинальных и повышенных нагрузках начинает проявляться эффект потери шагов (смотрите выше график возможной нагрузки от скорости вращения двигателя – механическую характеристику). Потеря шагов возможна также в случае каких либо внешних воздействий: ударов, вибраций, резонансов и т.п.

Современные системы управления шаговыми двигателями позволяют избавиться от этого общего недостатка шаговых двигателей.

Так как сервосистема – это система с обратной связью: в сервомоторе имеется датчик положения, по которому (в случае несоответствия) делается коррекция - то эффекта потери шагов в ней нет.

Принудительная остановка (столкновение с препятствием)

Принудительная остановка шагового двигателя не вызывает у него никаких повреждений

В случае принудительной остановки серводвигателя, драйвер мотора должен правильно среагировать на данную остановку. В противном случае по обратной связи подается сигнал на доработку не пройденного расстояния, повышается ток на обмотках, двигатель может перегреться и сгореть!

Ценовой критерий

Шаговые двигатели значительно дешевле серводвигателей, особенно шаговые двигатели китайского производства.

Чисто конструктивно (датчик положение, более сложный, чем у шагового двигателя, драйвер) серводвигатели дороже шаговых. К тому же, я не встречал в своей практике дешевых китайских серводвигателей.

Шаговый двигатель и сервопривод абсолютно не являются конкурентами, так как каждый занимает исключительно свою предопределенную нишу.

Сравнение работы простого Серво и Шагового двигателей:

Для понимания различия между обычным шаговым и серво двигателем давайте рассмотрим работу системы именно с шаговым мотором, на котором непосредственно стоит энкодер (шаговый серводвигатель).

Контроллер выдал команду на какое-то количество шагов – повернуть вал. В обычном шаговом двигателе контроллер не в курсе, насколько конкретно шагов повернулся вал (т. к. у него отсутствует обратная связь). Просто он «считает», что вал повернулся правильно. А ведь бывает, что двигатель не смог повернуть вал или силы не хватило или по другой какой-либо причине. Хотя при этом контроллер четко отсчитал импульсы. Это и есть так называемый пропуск шагов в шаговом двигателе.

В серводвигателе же подобная проблема полностью отсутствует. Контроллер дал команду вал повернуть настолько-то импульсов и ожидает покуда с энкодера придет сигнал, который подтвердит, что вал повернулся на необходимое число импульсов. При этом если с энкодера поступил, хотя бы на 1 импульс меньше, контроллер все равно будет продолжать подавать команду, пока с энкодера не поступит последний импульс, который выровняет соотношение истинного и заданного количества импульсов. Либо же по истечении заданного периода времени, контроллер выдаст специальный сигнал «Ошибка перемещения».

В сервоприводе удержание осуществляется исключительно за счет тока, протекающего непосредственно через обмотку двигателя. При этом в момент удержания половины периода ток поступает в одном направлении, а вторую половину оставшегося времени в ином направлении. Именно за счет этого происходит удержание якоря. В это время по импульсам с энкодера подходит проверка, якорь на месте (на выходе нет ни одного импульса) или же сдвинулся (на выходе энкодера, как правило, появится импульс, вернее код).

Преимущества шагового двигателя:

Шаговые двигатели существенно дешевле, нежели серводвигатели.
- Простота конструкции, а значит и простота ремонта.
- Простота системы управления (подходят практически все программы написанные для CNC станков).

Преимущества серводвигателя:

Бесшумность и плавность работы в некоторых случаях делают сервоприводы единственным возможным вариантом для работы.
- Надежность и безотказность: возможность применения в ответственных устройствах.
- Высокая точность и скорость перемещений доступны также и на низких скоростях.- Способность двигателя может выбираться пользователем непосредственно от того какую конкретно задачу необходимо выполнить.

Выводы:

Ограничением в использовании шаговых двигателей являются мощность и соответственно скорость, однако по практике, их применение целиком оправданно в недорогих станках имеющих систему ЧПУ, предназначенных для обработки дерева, ДСП, МДФ, пластиков, легких металлов и прочих материалов средней скорости, необходимости производителей станков с ЧПУ по точности и по скорости. Если по каким-либо причинам такие параметры не устраивают, то, как правило, используют сервоприводы. Но стоит заметить, что при этом резко и, причем значительно поднимается стоимость конструкции в целом.

Если смотреть с другой стороны, то достичь реальной экономии времени обработки и даже при скоростных сервоприводах, можно за счет экономии на переходах и соответственно оптимизации путей обработки. В остальное же время, скорость весьма ограничена – режимами резки. Между деталью и приводом есть еще и фреза о чем часто забывают.

Достоинства сервопривода таковы, что использовать их можно было бы постоянно, когда только возможно, конечно если бы не два существенных недостатка: цена самого комплекта (т. е. блок управления + сервомотор) и сложность настройки, которая временами делает применение сервопривода совершенно – необоснованным.

В каких случаях необходимы сервоприводы:

  • При скоростных раскроях материала «листового» (скорость перемещения инструмента более чем 25 метров в минуту). Следовательно, в таком случае целесообразно приобретать именно «раскроечный» станок с достаточно мощным шпинделем (до 5 кВт) и с цангой под большой инструмент, с вакуумным столом, с системой удаления стружки и, конечно же, с сервоприводами.
  • При производстве матриц и форм с претензионной точностью изготовления. В данном случае больше всего подходит фрезерный обрабатывающий центр, который можно заказать у компании INTERLASER.

В остальных же случаях наиболее чаще приобретают машины именно с шаговыми двигателями – просто это наиболее практичнее.

Новости

Внимание! Новинка! Высокоточный лазерный станок CCD IL-6090 SGC (с камерой), оснащенный усовершенствованной системой оптического распознавания объектов. Благодаря современному программному обеспечению и высококачественным комплектующим, станок способен самостоятельно распознавать и сканировать необходимые объекты из множества представленных, после чего вырезать их в заданных границах по необходимым параметрам.

Добрый день! Компания INTERLASER, сообщает Вам о огромном поступлении линз, зеркал для лазерного оборудованияЦены самые низкие на линзы и зеркала:Линзы для лазерных станков ZnSe (США):диаметр 20, фокус 2 (50.8 мм) - 3 304 рубдиаметр 20, фокус 5 (12.7 мм) - 3 304 рубдиаметр 25, фокус 2.5 (63.5 мм) - 7 350 руб Линзы для лазеров ZnSe (Китай):диаметр 20, фокус 2 (50.8 мм) - 2 450 рубдиаметр 20, фокус 5 (127 мм) - 2 450 рубдиаметр 25, фокус 2.5 (63.5 мм) - 4 900 руб Зеркала:диаметр 20 мм, толщина 2/3 мм - 840 рубдиаметр 25 мм, толщина 2/3 мм - 980 рубдиаметр 30...

Сервомоторы (серводвигатели ) представляют собой специализированные электродвигатели, оснащенные так называемой отрицательной обратной связью, с помощью которой осуществляется точное управление всеми параметрами движения. Ее суть состоит в том, что в процессе работы этих устройств происходит постоянное сравнение выходных параметров функционирования с изначально заданными входными. Происходит это на основе управляющих сигналов, генерируемых в режиме реального времени сервоконтроллерами, имеющими в своей конструкции энкодеры, то есть датчики обратной связи.

Таким образом, в конструкцию всех современных сервомоторов входит собственно электродвигатель и управляющий блок. В совокупности они представляют собой сервоприводы, с помощью которых конструкторам технических устройств удается решать целый ряд важных задач. Наиболее часто серводвигатели (сервоприводы) применяются в тех случаях, когда требуется в автоматическом режиме осуществлять точное позиционирование одних рабочих элементов конструкции разнообразного оборудования (например, станков с числовым программным управлением, прессо-штамповочного оборудования, роботизированных сборочных конвейеров и т. п.) относительно других.

Все выпускаемые ведущими мировыми производителями серводвигатели можно разделить на две большие группы: со щетками и без щеток. В сервоприводах могут использоваться как синхронные, так и асинхронные электродвигатели, а также синхронные линейные двигатели. Кроме того, в сервоприводах могут использоваться как корпусные, так и бескорпусные электродвигатели, причем во втором варианте исполнения роль корпуса играет пакет пластин статора, что позволяет максимально эффективно использовать весь их профиль, и при этом существенно уменьшить размеры и вес устройств в целом.

Большинство современных серводвигателей, работающих по принципу обратной связи, управляется сигналами, сформированными энкодером из нескольких системных. Одной из основных особенностей сервосистем является то, что они способны усиливать выходные сигналы, которые изначально, как правило, имеют гораздо меньшую мощность, чем входные (это необходимо для того, чтобы их можно было сравнить). Таким образом, при работе сервосистем их контуры в прямом направлении передают энергию, а в обратном – информацию, требуемую для точного управления.

Основными техническими характеристиками сервомоторов являются их динамика, равномерность движения и энергоэффективность. В последние годы все более широкое применение находят синхронные серводвигатели, которые выгодно отличаются от асинхронных более высокой динамикой, возможностью длительной работы на низких скоростях без принудительного охлаждения и более высокой устойчивостью к перегрузкам. В то же самое время асинхронные двигатели, используемые в сервоприводах, имеют перед синхронными двигателями такое преимущество, как полное отсутствие пульсации при вращении.

Третий компонент аппаратуры управления - сервомашинка. В данной статье мы постараемся объяснить вам, что это за компонент, каково его назначение, устройство и принцип работы сервопривода.

Определение сервопривода

Рулевой сервопривод - устройство с электродвигателем, которое позволяет добиться точного управления форматом движения радиоуправляемой модели путем отрицательной обратной связи. Любой сервопривод в своем устройстве имеет датчик и блок управления, который поддерживает определенные значения на датчике в соответствии с внешним параметром.

Опишем более простым языком, как работает сервопривод:

  • Сервопривод получает импульсный сигнал - управляющее значение, которое определяет угол поворота качалки сервы,
  • Блок управления начинает сравнение поступившего параметра со значением на своем датчике,
  • В зависимости от результата сравнения БУ возвращает сигнал, который предопределяет, какое действие необходимо выполнить: повернуть, ускориться или замедлиться, чтобы сравниваемые показатели стали одинаковыми.

Устройство сервопривода

Большинство современных рулевых машинок построены по одному принципу и состоят из таких составных частей: выходной вал, шестерни редуктора, двигатель постоянного тока, потенциометр, печатная плата и управляющая электроника.

Редуктор вместе с мотором образуют привод. Чтобы трансформировать поступающее напряжение в механический поворот, нужен электродвигатель. Редуктор же - конструкция из шестеренок - преобразует крутящий момент и служит для понижения скорости вращения двигателя, так как часто она настолько большая, что совсем не годится для практического применения.

Вместе с включением и выключением электродвигателя вращается и выходной вал, к которому закрепляется качалка - ее, в свою очередь, крепят к рулю модели. Именно качалка будет задавать движение нашей модели, а для этого в устройстве сервопривода предусмотрен потенциометр - датчик, способный превратить угол поворота обратно в электро-сигнал.

Однако, одним из главных элементов является плата управления, которая представляет собой электронную схему. Именно она получает электрический импульс, анализирует полученный сигнал с данными потенциометра и включает/выключает электродвигатель. Вот как устроен сервопривод и работа его элементов.

Кстати, в качестве мотора в устройстве сервопривода могут использоваться коллекторные, коллекторные Coreless и бесколлекторные двигатели.

Управление сервоприводом. Принцип работы.

Сервопривод получает импульсные сигналы, которые проходят по специальному проводу от приемника. Частота таких сигналов составляет 20мс, а их продолжительность может варьироваться в пределах 0,8-2,2мс. Чтобы у вас появилось четкое представление, как все-таки сигнал трансформируется в перемещение качалки, нужно проанализировать стандартную схему сервы.

где, ГОП - генератор опонного импульса (к нему подсоединен потенциометр), К - компататор, УВХ - устройство выборки-хранения, М - электрический мотор, который охватывается диагональю силового моста.

Теперь разберём более подробно, как работает сервопривод. Итак, импульсный сигнал поступает от ресивера на компататор и в то же время активирует ГОП. Продолжительность опорного импульса связано с положением потенциометра, который соединен с выходным валом физически. Когда качалка находится в средней позиции, длина сигнала составляет 1,5мс, если же положение крайнее - 0,8 или 2,2 мс. Управляющий сигнал и опорный импульс анализируются компататором, который рассчитывает их разностную величину (рассчет ведется по длительности импульсов). Именно длина разностного импульса и определяет насколько «ожидаемое» и «фактическое» состояние руля совпадает. Полученный показатель сохраняется в качестве потенциала в УВХ. Сложно?

Принцип работы сервопривода в разных условиях

Позиция качалки сервы соответствует состоянию стика пульта управления. Продолжительность опорного и управляющего импульсов одинакова. На всех выходах компататоров выставлено значение «0». Двигатель обесточен и качалка удерживает первоначальную позицию.

Пилот меняет положения стика, тем самым увеличивая управляющий импульс. На одном выходе компататора выведется разностный импульс, который будет сохранен в памяти УВХ. В этот момент на двигатель будет подано напряжение, станет вращаться, а вместе с ним и редуктор начнет движение, поворачивая качалку и потенциометр таким образом, чтобы продолжительность опорного импульса увеличивалась. Такие условия продлятся до тех пор, пока длины обоих импульсов не достигну одинаковых значений. Затем двигатель прекратит свое вращение.

Пилот отводит стик пульта в противоположную сторону, уменьшая при этом длину управляющего импульса. Управление сервоприводом на этом этапе схоже с процессом, описанном выше. На нижнем выходе компататора образуется разностный импульс, который запоминается УВХ и подает напряжение на двигатель. Мотор начинает вращаться, но уже в другую сторону, и продолжает работу до того момента, как длины импульсов снова не примут одинаковые значения.

Пилот не взаимодействует с пультом управления. Руль модели начинает поворачивать качалку сервопривода, так как учитывает нагрузку во время хода. Теперь меняется продолжительность опорного импульса, за счет чего разностный импульс посредством компататора и УВХ воздействует на двигатель и осуществляется подача момента на редуктор, что препятствует повороту качалки. Т.е. качалка удерживается в одном положении.

Мы разобрали работу сервопривода в упрощенном варианте. На самом деле существует множество нюансов по настройке и использования девайса, зная которые можно избежать поломок и неприятных ситуаций.

Теперь, зная, как устроен сервопривод, принцип его работы, можно отправляться и выбирать девайс для своей модели. Для этого вам нужно перейти в сайта «Planeta Hobby». Если же у вы не знаете, как правильно подобрать серву для своего самолета или авто, обращайтесь за советом нашего консультанта или читайте эту полезную статью.

Рассмотрим на этом занятии устройство и принцип работы сервоприводов. Разберем два простых скетча для управления сервоприводом с помощью потенциометра на Ардуино. Также мы узнаем новые команды в языке программирования C++ — servo.write , servo.read , servo.attach и научимся подключать в скетчах библиотеку для управления сервоприводами и другими устройствами через Ардуино.

Устройство сервомотора (servo)

Сервопривод (сервомотор) является важным элементом при конструировании различных роботов и механизмов. Это точный исполнитель, который имеет обратную связь, позволяющую точно управлять движениями механизмов. Другими словами, получая на входе значение управляющего сигнала, сервомотор стремится поддерживать это значение на выходе своего исполнительного элемента.

Сервоприводы широко используются для моделирования механических движений роботов. Сервопривод состоит из датчика (скорости, положения и т.п.), блока управления приводом из механической системы и электронной схемы. Редукторы (шестерни) устройства выполняют из металла, карбона или пластика. Пластиковые шестерни сервомотора не выдерживают сильные нагрузки и удары.

Сервомотор имеет встроенный потенциометр, который соединен с выходным валом. Поворотом вала, сервопривод меняет значение напряжения на потенциометре. Плата анализирует напряжение входного сигнала и сравнивает его с напряжением на потенциометре, исходя из полученной разницы, мотор будет вращаться до тех пор пока не выравняет напряжение на выходе и на потенциометре.


Управление сервоприводом с помощью широтно импульсной модуляции

Как подключить сервопривод к Ардуино

Схема подключения сервопривода к Arduino обычно следующая: черный провод присоединяем к GND, красный провод присоединяем к 5V, оранжевый/желтый провод к аналоговому выводу с ШИМ (Широтно Импульсная Модуляция). Управление сервоприводом на Ардуино достаточно просто, но по углам поворота сервомоторы бывают на 180° и 360°, что следует учитывать в робототехнике.

Для занятия нам понадобятся следующие детали:

  • Плата Arduino Uno / Arduino Nano / Arduino Mega;
  • Макетная плата;
  • USB-кабель;
  • 1 сервопривод;
  • 1 потенциометр;
  • Провода «папа-папа» и «папа-мама».

В первом скетче мы рассмотрим как управлять сервоприводом на Arduino с помощью команды myservo.write(0) . Также мы будем использовать стандартную библиотеку Servo.h . Подключите сервомашинку к плате Ардуино, согласно схеме на фото выше и загрузите готовый скетч. В процедуре void loop() мы будем просто задавать для сервопривода необходимый угол поворота и время ожидания до следующего поворота.

Скетч для сервопривода на Ардуино

#include Servo servo1; // объявляем переменную servo типа "servo1" void setup () { servo1.attach (11); // привязываем сервопривод к аналоговому выходу 11 } void loop () { servo1.write (0); // ставим угол поворота под 0 delay (2000); // ждем 2 секунды servo1.write (90); // ставим угол поворота под 90 delay (2000); // ждем 2 секунды servo1.write (180); // ставим угол поворота под 180 delay (2000); // ждем 2 секунды }

Пояснения к коду:

  1. Стандартная библиотека Servo.h содержит набор дополнительных команд, которая позволяет значительно упростить скетч;
  2. Переменная Servo необходима, чтобы не запутаться при подключении нескольких сервоприводов к Ардуино. Мы назначаем каждому приводу свое имя;
  3. Команда servo1.attach(10) привязывает привод к аналоговому выходу 10.
  4. В программе мы вращаем привод на 0-90-180 градусов и возвращаем в начальное положение, поскольку процедура void loop повторяется циклично.

Управление сервоприводом потенциометром


Подключение сервопривода и потенциометра к Ардуино Уно

Ардуино позволяет не только управлять, но и считывать показания с сервопривода. Команда myservo.read(0) считывает текущий угол поворота вала сервопривода и его мы можем увидеть на мониторе порта. Предоставим более сложный пример управления сервоприводом потенциометром на Ардуино. Соберите схему с потенциометром и загрузите скетч управления сервоприводом.

Скетч для сервопривода с потенциометром

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" void setup () { servo.attach (10); // привязываем сервопривод к аналоговому выходу 10 pinMode (A0, INPUT); // к аналоговому входу A0 подключим потенциометр Serial .begin (9600); // подключаем монитор порта } void loop () { servo.write (analogRead (A0)/4); // передает значения для вала сервопривода Serial .println (analogRead (A0)); // выводим показания потенциометра на монитор Serial .println (analogRead (A0)/4); // выводим сигнал, подаваемый на сервопривод Serial .println (); // выводим пустую строчку на монитор порта delay (1000); // задержка в одну секунду }

Пояснения к коду:

  1. В этот раз мы присвоили имя для сервопривода в скетче, как servo ;
  2. Команда servo.write(analogRead(A0)/4) передает значения для вала сервопривода — получаемое напряжение с потенциометра мы делим на четыре и оправляем данное значение на сервопривод.
  3. Команда Serial.println (servo.read(10)) считывает значение угла поворота вала сервопривода и передает его на монитор порта.

Сервомоторы часто используются в различных проектах на Ардуино для различных функций: повороты конструкций, движение частей механизмов. Так как мотор серво постоянно стремится удерживать заданный угол поворота, то будьте готовы к повышенному расходу электроэнергии. Это будет особенно чувствительно в автономных роботах, питающихся от аккумуляторов или батареек.

Также часто читают:

Сервопривод — сервомотор является электродвигателем, который осуществляет работу, основанную на принципе обратной связи. От ротора двигателя вращение через редуктор передается к управляющему механизму, обратная связь осуществляется управляющим блоком, который связан с датчиком, контролирующим угол поворота.
Сервомоторами пользуются в автомобилях, чтобы обеспечить линейное и угловое перемещение элементов, к точному положению которых предъявляются высокие требования. Принцип работы сервопривода основан на корректировки работы электродвигателя, чтобы исполнить управляющий сигнал.

Сервопривод — состав и назначение

Если управляющим сигналом задается угол, с которым поворачивается выходной вал мотора, он преобразуется в подаваемое напряжение. Для обратной связи используют датчик, измеряющий одну из выходных характеристик мотора. Показания, собираемые датчиком обрабатывается блоком управления, затем корректируется работа серводвигателя.

Конструкция сервопривода состоит из электромеханического узла, элементы которого располагаются внутри одного корпуса. Сервопривод включает редуктор, электродвигатель, блок управления и датчик.

Основные характеристики сервопривода это рабочее напряжение питания, крутящий момент, частота вращения, материалы и конструктивные, используемый в конкретной модели.

Сервопривод — конструктивные и рабочие особенности

На современных сервоприводах пользуются двумя типами электромоторов с полым ротором и сердечником. Моторы с сердечником располагают ротором с обмоткой, и магнитами постоянного тока размещенными вокруг. Особенность этих электромоторов заключается в возникновении вибраций при вращении маятника, что приводит к снижению точности угловых перемещений.

Моторы, имеющие полый ротор не обладают таким недостатком, но являются более дорогими из-за сложной технологии производства.

Редукторы сервоприводов нужны чтоб понижать частоту вращения и увеличивать крутящий момент выводного вала. Многие редукторы сервоприводов включают цилиндрическую зубчатую передачу, шестерни, изготовленные из полимерных материалов и металла. Для металлических редукторов характерна высокая стоимость, но при этом отличаются прочностью и долговечностью.

В зависимости от того какая требуется точность работы в сервоприводах могут использоваться пластиковые втулки или шарикоподшипники чтобы выставлять выходной вал по отношению к корпусу.

Сервопривод также различается типом используемого управляющего блока, которые бывают аналоговыми и цифровыми. Цифровыми блоками обеспечивается более точное позиционирование основного элемента сервопривода и большая скорость реакции.

Понравилась статья? Поделись с друзьями в соц.сетях!

Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта