Главная » Фасад » Коаксиальные кабели, применение и характеристики. Системы безопасности от а до я

Коаксиальные кабели, применение и характеристики. Системы безопасности от а до я

Коаксиальный кабель - самый распространенный в практике передачи видеосигналов. Частотная зависимость характеристики затухания от длины ограничивает дистанцию применения требованиями по разрешающей способности в системе. Для систем с высоким разрешением (более 400 ТВЛ) необходимо соблюдать следующие ограничения: для кабелей RG-59 или РК-75-4 максимальная дистанция передачи видео до 300м; для кабелей RG-11 или РК-75-7 максимальная дистанция передачи видео до 500м. При большом пространственном разносе источника и приемника сигналов требуются специальные меры по гальванической развязке. С увеличением длины коаксиального кабеля увеличивается степень воздействия на него внешних помех, растет затухание сигнала при его прохождении по кабелю. При превышении определенной длины кабеля потери в нем приводят сначала к уменьшению яркости, а затем к размытости пикселов и появлению характерного темного шлейфа от темных элементов изображения. Величина затухания зависит от качества материалов, применяемых для изготовления кабеля. О погонном затухании в коаксиальном кабеле типа РК можно судить по его конструкции: чем больше диаметр внутренней изоляции кабелей (в обозначении марки кабеля он указан в миллиметрах после цифры 75), тем меньше его погонное затухание.

Строение коаксиального кабеля

Коаксиальный кабель состоит из центрального проводника, внутреннего диэлектрика, экрана и внешней оболочки.
Центральный проводник кабеля предназначен для передачи сигнала из одной точки в другую. Его делают из материалов, хорошо проводящих электрический ток. Обычно используется медь, которая подходит для этих целей по своим электрическим, механическим и стоимостным параметрам. Другие материалы также могут применяться в каких-то специальных целях. К ним можно отнести алюминий, серебро и золото. Центральный проводник может быть как одножильным, так и многожильным.


Рис. 1. Коаксиальный кабель с центральным одножильным проводником и двойным экраном


Рис. 2. Коаксиальный кабель с центральным многожильным проводником и экраном-оплеткой

Одножильный - это центральный проводник, выполненный в виде одного прямого провода (рис. 1). Одножильный проводник хорошо формуется, но не отличается хорошей гибкостью. Поэтому кабели с одножильным проводником обычно используются в стационарных инсталляциях.
Витой многожильный - представляет собой проводник, состоящий из множества тонких проводов, свитых вместе (рис. 2). Эти кабели гибкие, они легче и применяются в основном в мобильных инсталляциях. Однако по своим характеристикам такой кабель несколько уступает кабелю с одножильным проводником такого же типоразмера.

Внутренний диэлектрик, называемый также внутренней изоляцией кабеля, выполняет в коаксиальных кабелях важную роль. Прежде всего, это материал, который изолирует центральный проводник от экрана. Но кроме того, он определяет импеданс и емкость кабеля.
Обычно в кабелях общего назначения используется полиэтилен, а для производства негорючих кабелей - фторсодержащие полимеры.
Дешевые кабели имеют диэлектрик из твердого полиэтилена. Более серьезный производитель использует вспененный полиэтилен, который обеспечивает более низкое погонное затухание сигнала в кабеле на высоких частотах.
Стоит заметить, что некоторые производители вспенивают диэлектрик химическим способом. В результате получается низкоплотный полиэтиленовый компаунд, подверженный механическим повреждениям и нестабильный к воздействию окружающей среды в виде температуры и влажности.
Наивысшее качество кабеля получается с физически вспененным диэлектриком. Он содержит до 60% воздушных пузырьков, за счет чего уменьшается затухание высоких частот сигнала. По прочности физически вспененный полиэтилен не отличается от обычного твердого невспененного полиэтилена, обеспечивая необходимую гибкость и устойчивость к механическим воздействиям. И, наконец, обладая высокой стойкостью к температурным колебаниям и влажности, физически вспененный диэлектрик обеспечит стабильность параметров и длительную эксплуатацию кабеля.

Экран выполняет две важные роли. Он работает как второй проводник, подключенный к общему «земляному» проводу оборудования. В то же время он экранирует сигнальный проводник от посторонних излучений. Существуют различные методы экранировки для кабелей, выполняющих различные задачи. Это экран из фольги, плетеный экран и комбинации из фольги и оплетки.
Оплетка - экран, который изготавливается из множества тонких проводников, сплетенных в виде сетки, охватывающей центральный проводник с внутренним диэлектриком (см. рис. 2). Оплетка обычно обладает меньшим сопротивлением, чем фольга, и отличается лучшей устойчивостью к постороннему электромагнитному полю и электромагнитным наводкам. Наводки имеют различный характер и происхождение. Это могут быть как низкочастотные наводки (например, от промышленной сети питания), так и высокочастотные (ВЧ-шум от работы электронных приборов и при искрении электрических машин).
Оплетка может сочетаться с другими видами экранов, например с алюминиевой или медной фольгой, которые дают наибольшее значение эффективности экранирования, т.к. фольга позволяет обеспечить до 100% экранировки в сочетании с оплеткой (см. рис. 1). Учитывая, что оплетка может обеспечить эффективность экранировки до 90%, чтобы получить 100%, необходимы две оплетки, что существенно увеличивает стоимость кабеля, его вес и ухудшает гибкость. Гораздо легче добиться 100% эффективности экранировки можно сочетанием оплетки и фольги.Об эффективности экранирования коаксиального кабеля можно судить по его конструкции: чем выше плотность внешнего проводника (экрана), тем больше значение этого параметра.

Необходимую защиту внутренних компонентов кабеля обеспечивает внешняя оболочка. Оболочка защищает кабель от климатического, химического воздействия и предохраняет от солнечного света. По типу оболочки кабели можно разделить на стандартные и специального исполнения.
Стандартный кабель - имеет обычную, чаще всего поливинилхлоридную оболочку, которая защищает кабель (в том числе и многожильный) от механических воздействий и влаги, а также играет роль электрической изоляции.

Основные параметры коаксиального кабеля

Импеданс - основной показатель, определяющий возможность передачи энергии сигнала по кабелю между источником и приемником. Все элементы на пути сигнала, разъемы и сам кабель должны иметь один импеданс. Несоблюдение этого правила приводит к внутренним отражениям в кабеле, что может привести к появлению на изображении двойных контуров. Самой частой причиной появления отражений являются некачественные разъемы или их неправильная установка, а также применение разъемов и кабелей разного импеданса.
Стандартный импеданс видеокабелей составляет 75 Ом.

Затухание - показатель потерь энергии сигнала внутри кабеля. Каждый кабель имеет свои частотные свойства, поэтому ослабление на разных частотах тоже разное и чем частота выше, тем ослабление больше.

Сопротивление - показатель качества проводника, буквально показывающий, какая часть энергии сигнала превратится в тепло. Результат таких потерь - снижение уровня сигнала, а соответственно, динамической яркости изображения.
Сопротивление измеряется в омах (Ω), и именуется иначе как сопротивление постоянному току или активное сопротивление. Для кабелей сопротивление указывается как Ом на 100 метров (Ω/100m) или Ом на 1000 футов (Ω/1,000 feet) и может именоваться также как погонное сопротивление.
Сопротивление зависит от материала проводника, его размеров и температуры.
Лучшие кабели имеют сигнальные проводники из химически чистой меди или покрываются тонким слоем серебра.

Емкость . По конструкции любой коаксиальный кабель - вытянутый конденсатор. Емкость измеряется в фарадах (F), а емкость кабеля в пикофарадах на метр (pF/m) или в пикофарадах на фут (pF/ft).
Емкость кабеля влияет на высокочастотные составляющие видеосигнала, то есть на четкость и детализацию изображения. Емкость определяется качеством диэлектрика и конструкцией кабеля. Этот параметр особенно важен при передаче цифровых сигналов.

Применяемые для систем видеонаблюдения коаксильные кабели всех видов (кабели снижения, магистральный кабель, распределительный кабель, абонентский кабель) должны иметь волновое сопротивление 75 Ом.
Условные обозначения отечественных коаксиальных кабелей согласно ГОСТу 11326.0.78 имеет следующий вид:РК.W-d-mn-q.
Первые две буквы (РК) указывают тип кабеля-радиочастотный, коаксиальный.
Первое число W означает величину номинального волнового сопротивления (50, 75, 100, 150, 200 Ом).
Второе число d соответствует номинальному диаметру изоляции округленному до меньшего ближайшего целого числа для диаметров более 2 мм (за исключением диаметра 2,95 мм, который округляется до 3 мм и диаметра 3,7 мм, который не округляется).
В зависимости от диаметра по изоляции кабеля подразделяются на субминиатюрные (до 1 мм), миниатюрные (1,5-2,95 мм), среднегабаритные (3,7-11,5 мм) и крупногабаритные (более 11,5 мм). Номинальный диаметр по изоляции коаксиального кабеля должен быть равен одной из величин следующего ряда:
0,15; 0,3; 0,6; 0,87; 1; 1,5; 2,2; 2,95; 3,7; 4,6; 4,8; 5,6; 7,25; 9; 11,5; 13; 17,3; 24; 33; 44; 60; 75 мм.
Для соединений между аппаратурой применяются в основном кабели от 5,6 до 7,5мм, для магистральных соединений применяются кабели 9-13 мм. Обычно самый лучший 11,5 мм.
Число «m» обозначает группу изоляции и категорию теплостойкости кабеля:
1-кабели со сплошной изоляцией обычной теплостойкости;
2-кабели со сплошной изоляцией повышенной теплостойкости;
3-кабели с полувоздушной изоляцией обычной теплостойкости;
4-кабели с полувоздушной изоляцией повышенной теплостойкости;
5-кабели с воздушной изоляцией обычной теплостойкости;
6-кабели с воздушной изоляцией повышенной теплостойкости;
7-кабели высокой теплостойкости.
Число « n» указывает на порядковый номер разработки.

В отдельных случаях в условное обозначение вводится дополнительная буква (q) :
С - кабель повышенной однородности и фазовой стабильности;
Г - герметичный;
Б - имеет бронепокров;
ОП - имеет поверх оболочки вылетку стальных оцинкованных проволок.
Например: РК-75-4-11-С-это означает радиочастотный, коаксиальный с номинальным волновым сопротивлением 75 Ом, номинальным диаметром изоляции 4,6 мм, со сплошной изоляцией обычной теплостойкости, порядковый номер разработки 1, кабель повышенной однородности.

Маркировка и обозначения импортных кабелей устанавливается международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG и др.)

При монтаже коаксиальных кабелей необходимо соблюдать минимальные радиусы изгиба (оговариваются в стандарте или ТУ на кабели разных марок).
Так, для кабеля РК-75-4-11 минимальный радиус изгиба при t> +5°C - 40 мм, а при t< +5°C - 70 мм.
Сгибать кабель под меньшим радиусом не рекомендуется. Следует также учитывать, что под действием собственного веса кабель вытягивается.
Это необходимо учитывать при прокладке кабеля (по вертикали) и между строениями. Его следует закреплять к стене (мачте) или вспомогательному тросу через каждые 1-2 м.

При хранении кабелей с воздушной и полувоздушной изоляцией их концы должны быть защищены от проникновения влаги внутрь кабеля, а при эксплуатации необходимо применять герметичные соединители.

Срастить два отрезка коаксиального кабеля 1 можно способом, показаным на рис. 3 для чего освобожденные от изоляции части центральных проводников кабелей необходимо максимально укоротить. Места пайки проводников не должны иметь значительных утолщений, поэтому центральные (внутренние) проводники частично спиливают надфилем (одна сторона проводника окажется плоской). После залуживания оловянно-свинцовым припоем спиленные концы проводников накладывают друг на друга и запаивают. Чтобы не изменить волновое сопротивление, необходимо восстановить на месте сращиваемого участка кабеля внутреннюю изоляцию 3 (предварительно изготавливается из снятой с кабеля внутренней полиэтиленовой изоляции). Деталь 2 вырезают из жести или медной фольги толщиной около 0,1…0,2 мм и устанавливают поверх соединенного участка с восстановленной изоляцией 3. Пайку оплетки кабелей следует произвести в местах вырезов детали 2. Для придания прочности соединению деталь 2 по всей длине целесообразно плотно обмотать изолентой 4.

Рис.3 Способ сращивания коаксильных кабелей.

В пособии к РД 78.145-93 указывается следующий способ сращиваняя коаксильного кабеля:

Снять с концов кабеля, предназначенных для соединения, верхнюю полиэтиленовую оболочку на длине не менее 30 мм от концов;
распустить металлическую оплетку, состоящую из тонких медных проволок на одном конце кабеля на 20 мм, на другом конце обрезать на такую же длину и из распущенных медных проволок оплетки скрутить 4 жгута и залудить;
- залудить оплетку второго конца кабеля по окружности на длине не менее 5 мм (во избежание расплавления полиэтиленовой изоляции центральной жилы, под оплетку, необходимо положить предохраняющую изоляцию из кабельной бумаги в 2 слоя);
- освободить центральную жилу кабеля от изоляции на длину не менее 15 мм;
- скрутить центральные жилы двух кабелей между собой и паять.
Длина оголенного слоя должна быть 15 мм;
- разрезать снятую изоляцию центральной жилы, наложить ее на спай центральных жил и, расправляя паяльником, заделать спай;
- припаять облуженные четыре жгута к облуженной оплетке второго кабеля симметрично со всех сторон;
- надеть на готовое соединение двух кабелей снятую разрезанную вдоль наружную изоляцию и оплавить ее с помощью паяльника с основной изоляцией кабеля.

При пайке центральной жилы нельзя допускать ее перегрева, т. к. при этом происходит смещение и нарушается однородность волнового сопротивления.
При монтаже кабелей и разделке оплеток последние нельзя разрезать: оплетку надо расплести, скрутить в одну или две косички и залудить.
Разделывая кабель, необходимо следить за тем, чтобы случайно не была подрезана центральная жила и чтобы не замкнуть на нее проволочную оплетку.

При такой заделке кабеля его однородность практически не нарушается. В противном случае, на экране видеоконтрольного устройства могут появиться повторы, вертикальные полосы и ухудшается помехозащищенность кабеля.

Если коаксиальный кабель проложен параллельно электросети, возникают проблемы. Величина ЭДС, наведенной в центральной жиле, зависит, во-первых, от тока, протекающего по сетевому кабелю, что, в свою очередь, зависит от тока потребления нагрузки по данной линии. Во-вторых, она зависит от того, насколько далеко коаксиальный кабель пролегает от силового кабеля. И, наконец, она зависит от того, на какой протяженности эти кабели пролегают вместе. Иногда соседство на протяжении 100 м не оказывает никакого влияния, но если по силовому кабелю течет большой ток, то даже 50 м могут сказаться на качестве видеосигнала. При монтаже постарайтесь (всегда, когда это возможно) сделать так, чтобы силовые и коаксиальные кабели не проходили очень близко друг к другу. Для ощутимого уменьшения электромагнитных помех необходимо, чтобы расстояние между ними составляло хотя бы 30 см.
На экране видеомонитора наводки электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Скорость их перемещения определяется разницей между частотой полей видеосигнала и промышленной частотой, и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы. Другие частоты проявляются в виде различных шумовых картин - в зависимости от источника наводок. Главное правило заключается в том, что, чем выше частота наведенного нежелательного сигнала, тем тоньше детали шумовой картины. Периодические наводки, вроде молнии или проезжающего автомобиля, будут давать нерегулярную картину шумов.

Разрыв кабеля посередине и заделка образовавшихся концов приведет к некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает потерю сигнала не более 0,3:0,5 дБ. Если в кабеле не слишком много подобных сращиваний, то потери сигнала незначительны.

1. Выбор разъемного соединения

Следующим шагом является качественное подключение коаксильного кабеля к оборудованию. Довольно часто один-единственный некачественный разъем приводит к потере качества изображения всей системы. Плохой обжим или пайка зачастую приводят к отражениям сигнала в кабеле, потерям и искажениям.
Выбранный кабель должен быть рассчитан на разделку на него нужного разъема, либо в спецификации нужно предусмотреть соответствующие переходники. Ведущие производители кабеля выпускают также и разъемы для кабеля, либо указывают в спецификациях рекомендуемый тип разъема другого производителя, обеспечивающий качественную разделку разъема на кабель.

Для подсоединения коаксиального кабеля к оборудованию применяют соединения под зажим. Это соединение для приемных телевизионных антенн, видеокамеры наружного наблюдения, и т. д. изображено на рис. 1.

Перед подключением коаксиального кабеля к оборудованию кабель необходимо разделать, залудить места подсоединения, т.е. центральный провод и наружную экранирующую оплетку. Экранирующую оплетку при разделки кабеля заворачивают в два слоя. Место подсоединения кабеля с разъемом необходимо герметизировать. Если это антенна, то необходимо герметизировать антенну коробку, чтобы не попали осадки и не происходило окисления в месте присоединения.

Коаксиальный кабель от места подсоединения до ближайшего соединения обязательно должен быть целый, без разрывов, т. к. в месте соединения двух отрезков нарушается однородность волнового сопротивления, что приводит к появлению отраженного сигнала, потерям уровня проходящего сигнала и повторам изображения.

Разъемы типа BNC.

Для соединения оборудования между элементами видеоохранной системы, систем кабельного телевидения и т. д., применяют разъемные соединения типа BNС, F, CP-75-154 П (вилка), СР-75-155 П (гнездо), СР-75-167 ПВ (вилка),СР-75-158 ПВ (гнездо), СР-75-201 ФВ (вилка), СР-75-202 ФВ (гнездо). Для каждого типа кабеля существуют свои разъемы (это определяется диаметром кабеля)..

В общем, все типы разъемов можно разделить на 3 большие группы. Для пайки (например, отечественные СР-50-74-ПВ), под обжим, и навинчивающиеся (twist-on). Первый вариант несколько надежнее, долговечнее, и даже дешевле остальных. Но требует большого времени, инструмента и высокой квалификации монтажников.

Вариант с использованием обжима наиболее распространен. Как главный недостаток такого разъема можно назвать одноразовость. В случае повреждения соединения его придется отрезать, и установить новый.

Навинчивающие разъемы относительно не надежны. Единственный плюс - легкость монтажа даже в полевых условиях.

Монтаж резьбовых, обжимных и компрессионных разъемов на коаксиальный кабель

а) разъем резьбовой

Берем разъем и начинаем накручивать его корпус на оболочку коаксиального кабеля с загнутой на нее проволочной оплеткой до того момента, пока край диэлектрика не станет ровно с краем корпуса разъема.
Место работы такого разъемного соединения – устоявшийся климат помещения в крайнем случае, отапливаемого подъезда. Не стоит экспериментировать с таким разъемом на улице. Он не герметичен, оплетка, будь она алюминиевая или медная, быстро окисляется, что не идет на пользу электрическим характеристикам соединения.
Для удобства обслуживания около видеокамеры в помещении можно поставить коробку, в которой при помощи разъемов соединяются кабели питания и видеосигнала, выходящие из камеры и приходящие из аппаратуры обработки видеосигнала. Это делается для того, чтобы в случае поломки камеры видеонаблюдения, её можно было быстро и легко заменить.

Край корпуса разъема и край гайки F-типа – это разные вещи. Главная трудность, чтобы размеры коаксиального кабеля по оболочке и разъема по внутреннему диаметру совпали. Как правило, этого добиться труднее всего. Чтобы видеосигнал, который идёт от камер видеонаблюдения в таком случае не пропадал и изображение на экране видеомонитора не дёргалось и не исчезало, накручиваем на конец кабеля изоленту до такой толщины, чтобы она соответствовала диаметру F-разъёма (изолента должна накручиваться плотно, виток к витку). Далее накручиваем F-разъём (если накрутили излишек изоленты, лишнюю уберите, если мало, то намотайте ещё), затем подрезаем лишний экран и укорачиваем центральную жилу.

б) разъем обжимной

Убедившись, что фольга не смята и оплетка равномерно распределена по оболочке кабеля, устанавливаем разъем на коаксиальный кабель, соблюдая те же требования, что и для резьбового разъема. При правильном подборе разъема и кабеля монтаж разъема не должен требовать больших усилий. Единственную трудность представляет монтаж разъема на коаксиальный кабель с полиэтиленовой оболочкой. Она механически более прочная и требует приложения больших усилий при монтаже разъема. Поэтому определенная категория монтажников уверяет свое руководство, что коаксиальный кабель с полиэтиленовой оболочкой очень плохой.

Lля уличной прокладки лучше этой оболочки ничего не придумали. Оболочка из полиэтилена лучше держит перепады температуры, механически более прочная на растяжение и абразивный износ, по сравнению с поливинилхлоридом влагостойкость выше в 20 раз. Как пример можно рассматривать коаксиальный кабель РК 75, который работает на улице еще с советских времен.

Далее приступаем к обжиму разъема.
– Для кабеля RG6 есть два размера обжимного инструмента:
.324’’ для стандартных разъемов (пример F-56-ALM 4,9/8,4 Cabelcon)
.360’’ для разъемов с усиленной и герметичной обжимной частью (пример F-56-UNIV 4,9/8,4 и F-56-EPA 4,9/8,1 Cabelcon, PCT59FS компании PCT)

– Для кабеля RG11 есть один размер.475’’ подходящий для любых модификаций разъемов различных производителей

При несоблюдении обжимных размеров разъема и инструмента гарантированно получаем два варианта. Первый – при обжиме стандартного разъема размером.360’’ разъем обжимается не полностью и с кабеля слетает. Второй – при обжиме усиленного и герметичного разъема размером.324’’ происходит разрушение корпуса разъема.

Обжим разъема плоскогубцами, кусачками, газовыми ключами, молотком и другими попавшими под руку предметами, как правило, ведет к порче оборудования и не приветствуется эксплутационным отделом и руководством.

Рис. 3 Инструменты и материалы, необходимые для оконцовывания коаксиального кабеля.

1. Начать лучше всего с обрезания небольшого кончика кабеля. Хотя на первый взгляд коаксиальный кабель выглядит плотным монолитом, его оплетка очень легко "набирает” воду. А наличие влаги вовсе не способствует возникновению качественного контакта.

2. Зачистка изоляции.
Профессиональные установщики, как правило, используют разделочный инструмент для подготовки коаксиального кабеля к монтажу разъема. Для коаксиального кабеля это весьма деликатная операция, при проведении которой используется специальный инструмент, отдаленно напоминающий бельевую прищепку.
Пара замечаний по этому поводу. Внимательно проверить горизонтальную установку лезвий, которые определяют размер зачищенного центрального проводника и размер снятой оболочки. Второе, не менее важное, это проверить высоту установки лезвия, которое зачищает центральный проводник коаксиального кабеля. Если при разделке кабеля это лезвие будет касаться центрального проводника, а он, как правило, выполнен из обмедненной стальной проволоки, то жизнь этого лезвия, увы, будет совсем недолгой.

Кабель RG закладывается под подпружиненную часть. По инструкции, конец кабеля не должен выступать за габарит устройства. Но в реальности удобнее оставить "снаружи” небольшой запас в 3-5 мм. Это позволит позже исправить некоторые ошибки в работе (если они, конечно, возникнут).

3. Затем устройство несколько раз поворачивается вокруг кабеля, разрезая находящимися внутри ножами изоляцию на фиксированную глубину. Надо отметить, что под каждый тип кабеля может потребоваться индивидуальная настройка ножей.

Рис.4 Надрезание изоляции коаксиального кабеля

4. После надрезания изоляции нужно осторожно удалить отрезанные части. Если все было сделано правильно, то внешний вид конца кабеля должен соответствовать показанному на Рис. 5 и образовывать аккуратные "ступеньки” - оплетка, изолятор - центральная жила.

Рис.5 Зачищенный коаксиальный кабель

5. Далее нужно надеть на центральную жилу контакт. При этом нужно, что бы кончик проводника полностью умещался внутри контакта, а последний краем плотно прилегал к срезу диэлектрика. Но при этом остаток жилы должен быть достаточно длинным, что бы надежно удерживаться всей внутренней поверхностью контакта после его обжимания.

6. Обжимание центрального контакта не требует особых навыков. Достаточно обычной аккуратности. Перепутать штамп почти невозможно, а способ укладки хорошо виден на Рис. 6.




Рис. 6
Обжимание центрального контакта.

Главное не повредить рабочую часть центрального контакта, для чего при обжиме она должна находиться в специальной прорези.

7. Далее нужно надеть на конец кабеля корпус разъема. Но перед этим - не забыть про трубочку, при помощи которой обжимается оплетка. Строго говоря, ее желательно надеть в самом начале работы, еще до надрезания - тогда не будет мешать оплетка. Но не поздно это сделать и непосредственно перед установкой корпуса.

Рис.7 Разъем перед обжиманием оплетки.

Оплетку (и фольгу, если она есть) нужно аккуратно расправить, и пустить поверх хвостовика корпуса разъема. Если кабель имеет редкую или непрочную оплетку, то желательно ее собрать в несколько более плотных "косичек”. Затем нужно поставить трубочку на место.

Рис.8 Обжим оплетки BNC разъема.

Кабель готов к использованию, и его можно присоединять к оборудованию. Ошибиться при выполнении этой операции почти невозможно.

Монтаж компрессионных BNC разъемов

Компрессионные разъемы - последнее достижение в области кабельных соединений.
Для повышения долговечности корпус и муфта коннектора выполнены из латуни, покрытой никелем, а запрессовываемая часть отлита из специального полимера, стойкого к ультрафиолету и климатическим перепадам, что обеспечивает отличную защиту при наружной инсталляции.Такая конструкция более устойчива к климатическим воздействиям и обеспечивает ряд функциональных преимуществ перед традиционными коннекторами.

В отличие от резьбовых и обжимных разъемов, в компрессионных для фиксации на кабеле используется пластиковая втулка, которая загоняется специальным инструментом между металлической цилиндрической частью разъема и оболочкой кабеля и равномерно обжимает кабель по окружности. При этом достигается 100% гидроизоляция со стороны кабеля (со стороны гайки гидроизоляция обеспечивается резиновым кольцом), лучшая экранировка и очень надежное механическое соединение - отрыв разъема возможен лишь путем отрыва оболочки кабеля.
Установка компрессионного разъема не отличается от установки на кабель обжимного разъема. Но принцип крепления компрессионного разъема на кабеле совершенно другой. Компрессионный инструмент сдвигает две части корпуса разъема в продольном направлении, образуя вот такой узел крепления.
На сегодняшний момент компрессионные разъемы обладают самыми высокими механическими и электрическими характеристиками.

Установка выполняется в три шага, как показано на рис. 9.

Рис. 9 Технология разделки компрессионного разъема на кабель.

Для качественной разделки разъемов на кабель лучше использовать фирменный обрезной и обжимной инструмент, рекомендованный для данного типа кабеля и разъемов, иначе качество контакта гарантировать проблематично.

Только обеспечив надежный контакт кабеля с разъемом и надежную фиксацию кабельного разъема в разъеме аппаратном, мы можем быть уверены, что наши усилия по расчету и выбору кабеля не пропали даром. Ибо электроника - это наука о контактах.


2. Лужение и пайка кабеля.

Для лужения и пайки применяют мягкий припой. Радио мастеру необходимо владеть паянием мягким припаем. Мягкий припай представляет собой обычно сплав олова со свинцом с содержанием олова от 30 до 60%. Содержание олова в припае можно установить по хрусту, который издает припай при сгибании его. Хруст тем сильнее, чем больше процент олова.

В соответствии со стандартом олово-свинцовые припои маркируются буквами ПОС и числом, указывающим содержание олова в процентах. С увеличением количества олова от 18% до 64% температура плавления припоя понижается от 2400 до 1800С. Так как олово является дефицитным материалом, рекомендуется применять сплавы с умеренным содержанием олова (чаще всего ПОС-30).

Для производства лужения и пайки применяют электропаяльники мощностью от 25 Вт до 100Вт. Напряжение питания электропаяльников 220 Вт переменного тока или для помещений с повышенной опасностью, или в особо опасных помещениях по технике безопасности применяют электропаяльники с напряжением питания 36-42 В переменного тока.

Наконечник электропаяльника нужно постоянно поддерживать в чистом состоянии и через определенные промежутки времени отчищать от окалины.

При паянии мягким припоем необходимо места спайки тщательно зачистить мелким напильником, ножом или наждачной бумагой. Чтобы уменьшить окисление зачищенной поверхности проводника применяют спирто-канифольную смесь или канифоль для лучшего лужения поверхности, т. е. флюсы. Их наносят на поверхность вместе с припоем. Перед производством пайки проводов или элементов необходимо обе поверхности залудить, а затем производить пайку. Прогревать припой необходимо до полного плавления и образования капли. Затем каплю поднести к месту пайки и прогревать до полного оплавления двух поверхностей. При этом нужно учитывать, что от перегрева может оплавиться изоляционный материал между центральным проводом и экранирующей оплеткой в кабеле. Пайка одной точки должна быть не более 2-х секунд.

При пользовании электропаяльником необходимо проверять, чтобы провод питания был целым и не было оплавленной изоляции. Недопустимо, чтобы один из проводов питания через спираль нагрева касался корпуса паяльника. Ручка паяльника должна быть целой. При пайки не допускать касания шнура питания нагретых деталей паяльника во избежании оплавления изоляции. При пайки элементов, не допускающих статических наводок необходимо паять на заземленных столах и иметь экранирующий браслет.

Коаксиальный кабель - это электрический кабель, состоящий из центрального провода и металлической оплетки, между собой разделенный слоем диэлектрика (внутренней изоляции), а также помещенных в общую внешнюю оболочку.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

Еще совсем недавно был очень распространенным, связано это с тем, что благодаря металлической оплетке, он обладает высокой помехозащищенностью, также более высокими допустимыми скоростями передачи данных (до 500 Мбит/с), чем в случае витой пары и большими допустимыми расстояниями передачи (до 1 км и выше). При несанкционированном прослушивании сети, подключиться к нему механически сложнее и он также дает волне меньше электромагнитных излучений. Однако выполнить ремонт и монтаж коаксиального кабеля значительно сложнее, а его стоимость выше (в сравнении с кабелем на основе витых пар, он дороже примерно в 1,5-3 раза). Установка разъемов на концах кабеля также труднее, поэтому он сейчас и используется реже, чем витая пара.

С топологией типа "шина" в компьютерных локальных сетях, находит основное применение коаксиальный кабель . Обязательно нужно устанавливать терминаторы на концах кабеля, чтобы предотвратить внутренние отражения сигнала, причем заземлен должен быть ТОЛЬКО ОДИН из терминаторов. Металлическая оплетка без заземления не выполняет защиту сети от внешних электромагнитных помех и не снижает излучение информации, передаваемой по сети во внешнюю среду. Если произвести заземление оплетки в двух точках или более, то может из строя выйти не только сетевое оборудование, но также и компьютеры. Требуется обязательно согласовать терминаторы с кабелем, то есть должно быть равно их сопротивление и волновое сопротивление кабеля . Если например, будет использоваться 50-омный кабель, то тогда только 50-омные терминаторы подходят для него.

Коаксиальный кабель реже применяется в сетях с топологией "звезда" или "пассивная звезда" (в сети Arcnet, например). Проблема согласования в этом случае значительно упрощается, на свободных концах уже не требуется внешних терминаторов.

В сопроводительной документации указывается волновое сопротивление кабеля. Чаще всего применяются в локальных сетях 50-омные (например, RG-58 или RG-11) и 93-омные кабели (к примеру, RG-62), в локальных сетях не применяют используемые в телевизионной технике 75-омные кабели. Существует значительно меньше марок коаксиального кабеля , чем кабелей на основе витых пар, он уже не считается перспективным.

Типы коаксиального кабеля.

  • Тонкий кабель, более гибкий и имеет диаметр около 0,5 см.
  • Толстый кабель, более жесткий, он имеет диаметр около 1 см и собой представляет классический вариант коаксиального кабеля , который почти полностью уже вытеснен современным тонким кабелем.

Тонкий кабель применяется для передачи на более маленькие расстояния, чем толстый, из-за того, что сигнал в нем затухает сильнее. Зато гораздо удобнее работать с тонким кабелем, к каждому из компьютеров его можно оперативно проложить, толстому кабелю потребуется жесткая фиксация на стене помещения. При подключении к тонкому кабелю не потребуется дополнительное оборудование и выполнить его значительно проще (при помощи разъемов BNC байонетного типа), а при подключении к толстому кабелю, необходимо использование специальных достаточно дорогих устройств, которые прокалывают его оболочки, также устанавливают контакт с центральной жилой и экраном. По сравнению с тонким, толстый кабель дороже примерно в 2 раза, поэтому гораздо чаще применяется именно тонкий кабель.

Важным параметром коаксиального кабеля , как и в случае витых пар, является тип его внешней оболочки. В данном случае, точно так же применяются как non-plenum (PVC), так и plenum кабели. Тефлоновый кабель, конечно дороже, чем поливинилхлоридный, тип оболочки кабеля обычно можно отличить по ее окраске (желты цвет фирма Belden использует для кабеля PVC , а оранжевый - для тефлонового).

В коаксиальном кабеле типичные величины задержки составляют для тонкого кабеля около 5 нс/м и около 4,5 нс/м - для толстого. Еще существуют коаксиальные кабели с двойным экраном (один экран располагается внутри другого и от него отделен дополнительным слоем изоляции), у таких кабелей лучшая помехозащищенность, а также защита от прослушки, но они стоят немного дороже, чем обычные.

Считается, что сейчас коаксиальный кабель устарел и его в большинстве случаев может вполне заменить витая пара или же оптоволоконный кабель. В новых стандартах для кабельных систем, его в перечень кабелей уже не включают.

Это английское изобретение известно еще с 19-го века. Основной конструктивной особенностью считаются два проводника, расположенные на одной оси и разделенные во внешней оболочке диэлектрическим материалом. В самом начале коаксиальный кабель применялся в общественных телевизионных антеннах для передачи сигнала к телевизорам. В дальнейшем он стал широко использоваться в компьютерных сетях, кабельном телевидении, системах видеонаблюдения и других инженерных радиотехнических комплексах.

В настоящее время коаксиальный кабель постепенно вытесняется современными высокоскоростными беспроводными технологиями передачи данных, однако в своих традиционных областях он продолжает пользоваться стабильным устойчивым спросом.

Устройство и принцип работы

Простейшая конструкция коаксиального кабеля включает в себя медную жилу, заключенную в изоляцию, металлическую экранирующую оплетку и внешнюю оболочку. В некоторых модификациях дополнительно присутствует слой фольги, что означает двойную экранизацию. Наиболее сильные помехи преодолеваются кабелями, содержащими четыре экранизации, включающей два слоя фольги и два слоя металлической оплетки. Это наиболее простой ответ на вопрос, как выглядит данная конструкция и что содержит внутри.

Некоторые кабели могут быть снаружи покрыты металлической сеткой, выполняющей функцию дополнительного экрана. Он обеспечивает надежную защиту данных, передаваемых по кабелю, одновременно поглощая помехи или шумы в виде внешних электромагнитных сигналов. Наличие такого экрана не позволяет помехам искажать передаваемые данные.

Кодировка данных осуществляется с помощью электрических сигналов, передаваемых по жиле. Она может быть сплошной и состоять из одного медного провода или из нескольких проводков. Жилу окружает слой изоляции, отделяющей ее от металлической оплетки. Сама оплетка выполняет функцию заземления, устраняя электрические шумы и перекрестные помехи. Эти помехи являются электрическими наводками, появляющимися под влиянием проводов, расположенных рядом.

Не допускается соприкосновение металлической оплетки и проводящей жилы, поскольку это может привести к короткому замыканию. Помехи проникнут в жилу и разрушат передаваемые данные. Дополнительная защита от помех обеспечивается за счет наружной непроводящей оболочки, которая может быть резиновой, пластиковой или тефлоновой.

Где используется

До недавних пор коаксиальный кабель широко применялся в различных областях. Его технические характеристики обеспечивали надежную защиту от помех, высокую допустимую скорость передачи данных на значительные расстояния. Некоторые качества кабеля значительно выше, чем у . Поэтому вопроса, для чего нужен такой кабель, ни у кого не возникало. Однако со временем витая пара стала применяться все чаще, поскольку ее монтаж значительно проще и быстрее, по сравнению с коаксиальным кабелем, стоимость которого также более высокая.

Тем не менее, данные кабели широко применяются для соединения локальных компьютерных сетей, особенно там, где используются конфигурация в виде шины. В этих случаях концы каждой линии оборудуются специальными терминаторами, не допускающими внутренних отражений сигналов. Один из таких терминаторов подлежит обязательному заземлению, в противном случае металлическая оплетка не сможет защитить сеть от воздействия внешних помех и снизить излучение во внешнюю среду при передаче информации. Дополнительно обеспечивается и требуемая скорость коаксиального кабеля.

Кроме шин, данная продукция может использоваться в сетевых конфигурациях «звезда» и «пассивная звезда». Такие подключения выполнять значительно проще, поскольку внешние терминаторы на концы не устанавливаются.

Кабели этого типа успешно используются для передачи сигналов высокой частоты в различных электронных и электротехнических системах.

  • Это различные виды связи
  • Компьютерные и вещательные сети
  • Антенно-фидерные устройства
  • Системы контроля и видеонаблюдения
  • Автоматики и сигнализации
  • Системы измерения, дистанционного управления и контроля
  • Коаксиальные кабели применяются в военной технике и многих других областях специального назначения.

Виды коаксиальных кабелей

Все коаксиальные кабели, в соответствии с техническими характеристиками, имеют две основные разновидности.

К первому варианту относится тонкий коаксиальный кабель, диаметром не более 5 мм, отличающийся повышенной гибкостью. С его помощью осуществляется передача на небольшие расстояния, поскольку затухание сигнала в нем происходит значительно быстрее, по сравнению с более толстой конструкцией. Тонкие кабели считаются наиболее оптимальным вариантом для прокладки локальных сетей и подключения к отдельным компьютерам. Использование специальных разъемов существенно упрощает монтаж, а сама конструкция не требует дополнительного оборудования.

Второй основной разновидностью является классический толстый коаксиальный кабель, диаметр которого составляет примерно 10 мм. Он отличается повышенной жесткостью, для монтажа требуются специальные дорогостоящие приспособления. Стоимость толстого кабеля в среднем в два раза дороже тонкого, поэтому он используется значительно реже, в тех случаях, когда без него совершенно не обойтись. Задержка распространения сигнала в толстом кабеле составляет примерно 4,5 нс/м, а в тонком - 5 нс/м.

Некоторые типы коаксиальных кабелей выпускаются с двумя экранами, один из которых помещается внутри другого. Для их разделения используется дополнительный изоляционный слой. За счет этого они гораздо лучше защищены от помех и от прослушивания, в связи с чем пользуются повышенным спросом, несмотря на более высокую стоимость.

Существует еще один вид данных изделий - кабель силовой коаксиальный, применяющийся в электротехнике. С его помощью осуществляется передача и распределение электроэнергии в силовых и осветительных сетях. Конструкция состоит из внутреннего одножильного провода и наружного многожильного проводника. Между ними проложена изоляция, а весь кабель целиком защищен внешней пластмассовой диэлектрической оболочкой, дополненной стальными жилами в форме токопроводящей бронирующей арматуры.

Существенным недостатком этой конструкции считается большой вес одного погонного метра кабеля, что делает невозможным его использование в воздушных линиях. Возникает реальная опасность провисания и обрыва.

Характеристики коаксиального кабеля

Независимо от разновидности, все кабели этого типа, обладают общими техническими характеристиками. Одной из основных считается волновое сопротивление коаксиального кабеля, определяющее качество проводника и передаваемого конечного сигнала. На данный параметр полностью влияет материал проводника и его свойства - диэлектрическая проницаемость, емкость, индуктивность и удельное сопротивление. От материала проводника зависит и погонное ослабление на различных частотах. Уровень сигнала понижается в зависимости от увеличения или уменьшения расстояния передачи.

Существуют такие понятия, как погонная емкость и индуктивность. В первом случае кабель характеризуется способностью к накоплению заряда, а во втором - способностью к созданию магнитного поля. Другие характеристики - диаметр центральной жилы, внутренний диаметр экрана, внешний диаметр оболочки и другие - используются в расчетах перед монтажом, для того чтобы правильно определить место установки, гарантирующее корректную работу всего кабеля.

Маркировка коаксиального кабеля

Каждый кабель имеет собственную маркировку, содержащую краткие характеристики того или иного изделия. Это значительно облегчает выбор наиболее подходящего варианта.

Например, марка КМБ-4 соответствует магистральному коаксиальному кабелю в свинцовой оболочке с броней типа Б. В нем содержится 4 коаксиальные пары и 5 четверок медных жил в бумажной изоляции, расположенных симметрично. В зависимости от маркировки, изменяется и предназначение того или иного кабеля.

Основными разновидностями считаются: кабель КМГ - коаксиальный магистральный голый, прокладываемый в канализации, КМК - с броней из круглой проволоки для прокладки под водой, КМАБп - с алюминиевой оболочкой, устойчивый к грозовым явлениям. Все данные о всех известных типах кабелей сведены в специальные таблицы, помещенные в справочники, откуда и можно получить всю необходимую информацию.

Коаксиальный кабель

Коаксиа́льный ка́бель (от лат. co - совместно и axis - ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial ), - электрический кабель , состоящий из расположенных соосно центрального проводника и экрана. Обычно служит для передачи высокочастотных сигналов. Изобретён и запатентован в 1880 году британским физиком Оливером Хевисайдом .

Телевизионный коаксиальный кабель типа RG-59

Устройство

Коаксиальный кабель (см. рисунок) состоит из:

  • 4 (A) - оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • 3 (B) - внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • 2 (C) - изоляции, выполненной в виде сплошного (полиэтилен , вспененный полиэтилен, сплошной фторопласт , фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • 1 (D) - внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди , медного сплава, алюминиевого сплава, омеднённой стали , омеднённого алюминия, посеребрённой меди и т. п.

Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.

История создания

Применение

Основное назначение коаксиального кабеля - передача высокочастотного сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики ;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

  • кабельные линии задержки ;
  • симметрирующие и согласующие устройства;
  • фильтры и формирователи импульса.

Существуют коаксиальные кабели для передачи низкочастотных сигналов (в этом случае оплётка служит в качестве экрана) и для постоянного тока высокого напряжения. Для таких кабелей волновое сопротивление не нормируется.

Классификация

По назначению - для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

Международные обозначения

Системы обозначений в разных странах устанавливаются международными, национальными стандартами, а также собственными стандартами предприятий-изготовителей (наиболее распространённые серии марок RG, DG, SAT).

Категории

Кабели делятся по шкале Radio Guide. Наиболее распространённые категории кабеля:

  • RG-11 и RG-8 - «толстый Ethernet» (Thicknet), 75 Ом и 50 Ом соответственно. Стандарт 10BASE-5 ;
  • RG-58 - «тонкий Ethernet» (Thinnet), 50 Ом. Стандарт 10BASE-2 :
  • RG-58/U - сплошной центральный проводник,
  • RG-58A/U - многожильный центральный проводник,
  • RG-58C/U - военный кабель;
  • RG-59 - телевизионный кабель (Broadband/Cable Television), 75 Ом. Российский аналог РК-75-х-х («радиочастотный кабель»);
  • RG-6 - телевизионный кабель (Broadband/Cable Television), 75 ом. Кабель категории RG-6 имеет несколько разновидностей, которые характеризируют его тип и материал исполнения. Российский аналог РК-75-х-х;
  • RG-11- магистральный кабель, практически незаменим, если требуется решить вопрос с большими расстояниями. Этот вид кабеля можно использовать даже на расстояниях около 600 м. Укреплённая внешняя изоляция позволяет без проблем использовать этот кабель в сложных условиях (улица, колодцы). Существует вариант S1160 с тросом, который используется для надёжной проброски кабеля по воздуху, например, между домами;
  • RG-62 - ARCNet , 93 Ом.

«Тонкий» Ethernet

Был наиболее распространённым кабелем для построения локальных сетей . Диаметр примерно 6 мм и значительная гибкость позволяли ему быть проложенным практически в любых местах. Кабели соединялись друг с другом и с сетевой платой в компьютере при помощи T-коннектора BNC . Между собой кабели могли соединяться с помощью I-коннектора BNC (прямое соединение). На обоих концах сегмента должны быть установлены терминаторы. Поддерживает передачу данных до 10 Мбит/с на расстояние до 185 м.

«Толстый» Ethernet

Более толстый, по сравнению с предыдущим, кабель - около 12 мм в диаметре, имел более толстый центральный проводник. Плохо гнулся и имел значительную стоимость. Кроме того, при присоединении к компьютеру были некоторые сложности - использовались трансиверы AUI (Attachment Unit Interface), присоединённые к сетевой карте с помощью ответвления, пронизывающего кабель, т. н. «вампирчики». За счёт более толстого проводника передачу данных можно было осуществлять на расстояние до 500 м со скоростью 10 Мбит/с. Однако сложность и дороговизна установки не дали этому кабелю такого широкого распространения, как RG-58. Исторически фирменный кабель RG-8 имел жёлтую окраску, и поэтому иногда можно встретить название «Жёлтый Ethernet» (англ. Yellow Ethernet ).

Вспомогательные элементы коаксиального тракта

  • Коаксиальные разъёмы - для подключения кабелей к устройствам или их сочленения между собой, иногда кабели выпускаются из производства с установленными разъёмами.
  • Коаксиальные переходы - для сочленения между собой кабелей с непарными друг другу разъёмами.
  • Коаксиальные тройники , направленные ответвители и циркуляторы - для разветвлений и ответвлений в кабельных сетях.
  • Коаксиальные трансформаторы - для согласования по волновому сопротивлению при соединении кабеля с устройством или кабелей между собой.
  • Оконечные и проходные коаксиальные нагрузки, как правило, согласованные - для установления нужных режимов волны в кабеле.
  • Коаксиальные аттенюаторы - для ослабления уровня сигнала в кабеле до необходимого значения.
  • Ферритовые вентили - для поглощения обратной волны в кабеле.
  • Грозоразрядники на базе металлических изоляторов или газоразрядных устройств - для защиты кабеля и аппаратуры от атмосферных разрядов.
  • Коаксиальные переключатели, реле и электронные коммутирующие коаксиальные устройства - для коммутации коаксиальных линий.
  • Коаксиально-волноводные и коаксиально-полосковые переходы, симметрирующие устройства - для состыковки коаксиальных линий с волноводными, полосковыми и симметричными двухпроводными.
  • Проходные и оконечные детекторные головки - для контроля высокочастотного сигнала в кабеле по его огибающей.

Основные нормируемые характеристики

  • Погонное ослабление на разных частотах
  • Погонная ёмкость
  • Погонная индуктивность
  • Диаметр центральной жилы
  • Внутренний диаметр экрана
  • Внешний диаметр оболочки
  • Максимальная передаваемая мощность
  • Максимальное допустимое напряжение
  • Минимальный радиус изгиба кабеля

Расчёт характеристик

Определение погонной ёмкости, погонной индуктивности и волнового сопротивления коаксиального кабеля по известным геометрическим размерам проводится следующим образом.

Сначала необходимо измерить внутренний диаметр D экрана, сняв защитную оболочку с конца кабеля и завернув оплетку (внешний диаметр внутренней изоляции). Затем измеряют диаметр d центральной жилы, сняв предварительно изоляцию. Третий параметр кабеля, который необходимо знать для определения волнового сопротивления, - относительная диэлектрическая проницаемость ε материала внутренней изоляции.

Погонная ёмкость C h (в системе СИ , результат выражен в фарадах на метр) вычисляется по формуле ёмкости цилиндрического конденсатора :

где ε 0 - электрическая постоянная .

Погонная индуктивность L h (в системе СИ, результат выражен в генри на метр) вычисляется по формуле

где μ 0 - магнитная постоянная , μ - относительная магнитная проницаемость изоляционного материала, которая во всех практически важных случаях близка к 1.

Волновое сопротивление коаксиального кабеля в системе СИ :

(приближённое равенство справедливо в предположении, что μ = 1).

Волновое сопротивление коаксиального кабеля можно также определить по номограмме, приведённой на рисунке. Для этого необходимо соединить прямой линией точки на шкале D/d (отношения внутреннего диаметра экрана и диаметра внутренней жилы) и на шкале ε (диэлектрической проницаемости внутренней изоляции кабеля). Точка пересечения проведённой прямой со шкалой R номограммы соответствует искомому волновому сопротивлению.

Скорость распространения сигнала в кабеле вычисляется по формуле

где c - скорость света . При измерениях задержек в трактах, проектировании кабельных линий задержек и т. п. бывает полезно выражать длину кабеля в наносекундах, для чего используется обратная скорость сигнала, выраженная в наносекундах на метр: 1/v = √ ε ·3,33 нс/м .

Предельное электрическое напряжение, передаваемое коаксиальным кабелем, определяется электрической прочностью S изолятора (в вольтах на метр), диаметром внутреннего проводника (поскольку максимальная напряжённость электрического поля в цилиндрическом конденсаторе достигается возле внутренней обкладки) и в меньшей степени диаметром внешнего проводника:

Кабели с разрывами в экранирующей оболочке используются в качестве распределённых антенн.

Назначение любой радиотехнической линии передачи состоит в том, чтобы передать сигнал от источника к нагрузке с минимальными потерями и минимальными искажениями. И внутриблочный монтаж и провода и кабели, соединяющие различные радиоэлектронные устройства, например, передающую телевизионную камеру с видеомагнитофоном, все это – линии связи.

Устройство и принцип действия линий связи зависит от диапазона частот сигналов, которые планируется по ним передавать.

Сигналы в диапазоне частот от 1 Гц до 30 кГц – это сигналы звуковых частот, они обычно передаются по проводам.

Провод содержит одну или несколько скрученных проволок или изолированных жил, защищенных легкой неметаллической оболочкой или оплеткой из волокнистых материалов. Если оплетка должна выдерживать большие механические нагрузки и защищать провод от грызунов, ее делают из проволоки.

СОВЕТ
Для передачи сигналов звуковых частот используйте провода, а не коаксиальные кабели

Сигналы в диапазоне частот от 30 кГц до 300 ГГц – это сигналы радиочастот. Для передачи таких сигналов используют экранированные провода и коаксиальные кабели, а в диапазоне СВЧ, начиная с частоты 3 ГГц, используют волноводы.

Волноводы представляют собой проводящие трубки прямоугольного, круглого или эллиптического сечения, которые позволяют волне распространяться по длине трубы, отражаясь от ее стенок. Достоинствами волновода по сравнению с коаксиальным кабелем являются низкие потери мощности, низкий коэффициент стоячей волны и высокая рабочая частота, однако они дороги, громоздки, сложны для монтажа, и, несмотря на появление т.н. гибких волноводов, не рассчитаны на многократные изгибы и перегибы.

Коаксиальным кабелем (от лат. co – совместно и axis – ось) называют кабель связи из одной или нескольких (до 20 и более) коаксиальных пар, в которых оба проводника – внутренний и внешний, представляют собой соосные цилиндры, разделенные слоем изоляции (полиэтиленовой, воздушнополиэтиленовой, фторопластовой или другой).

Видеосигнал проходит через центральную жилу, в то время как экран используется для уравнивания нулевого потенциала концевых устройств – видеокамеры и видеомонитора, например. Экран также защищает центральную жилу от внешних электромагнитных помех (ЭМП). Для улучшения работы электрического экрана в хороших коаксиальных кабелях предусматривается возвратный провод.

Коаксиальный кабель – самое распространенное средство передачи видеосигналов.

Идея соосного строения кабеля состоит в том, что все помехи наводятся только в экране. Если он надежно заземлен, то наводки «разряжаются» через цепь заземления.

Коаксиальный кабель замыкает контур между источником и приемником, где центральная жила кабеля является сигнальным проводом, а экран – заземляющим. Поэтому передачу по коаксиальному кабелю и называют несимметричной передачей.

В радиоэлектронной аппаратуре чаще всего применяют простой коаксиальный кабель, содержащий одну центральную жилу, окруженную экраном (рис. 1), или триаксиальный кабель, имеющий две центральные жилы.


Рис. 1 Коаксиальный кабель

СОВЕТ
Для передачи сигналов цветности (С) и яркости (Y), выдаваемых спутниковыми ресиверами, DVD-проигрывателями и другими устройствами с интерфейсом S-Videо используйте триаксиальные кабели.


Рис. 2 Триаксиальный (двухкоаксиальный) кабель

Коаксиальный кабель – самое распространенное средство передачи видеосигналов. В зависимости от типа видеосигнала его можно передавать от источников к приемникам с помощью коаксиального кабеля с волновым сопротивлением 75 Ом на расстояния, приведенные в таблице 1.

Тип сигнала Вид сигнала Полоса пропускания, Мгц Расстояние, м
Композитный CV
без усилителя
с усилителем
аналоговый 6
50-100
200-300
S-Video
без усилителя
с усилителем
аналоговый 6
50-100
200-300
Компонентный
UXGA
HDTV/1080i
аналоговый
300
30

5-30
5-30
SDI
стандарт без усилителя
стандарт с усилителем
цифровой
270 Мбит/с
270 Мбит/с

50-200
200-300

Основные характеристики коаксиальных кабелей

Основными характеристиками коаксиальных кабелей являются:

  • Погонное волновое сопротивление (characteristic impedance);
  • Возвратные потери (return loss);
  • Затухание (attenuation).

Погонное волновое сопротивление

Короткие провода и кабели, используемые в обычных электронных блоках оборудования, имеют незначительные омическое сопротивление, индуктивность и емкость и не влияют на сигнал. Однако если сигнал должен быть передан на довольно большое расстояние, в сложную картину передачи информации включается множество разных факторов. Особенно подвержены влиянию высокочастотные сигналы. Тогда сопротивление, индуктивность и емкость начинают играть значительную роль и ощутимо влияют на передачу сигнала.

С точки зрения электродинамики коаксиальный кабель можно представить в виде схемы, состоящей из сопротивлений (R), индуктивностей (L), конденсаторов (С) и проводников (G) на единицу длины (рис. 3). Если кабель имеет значительную длину, то совокупность элементов R, L и С действует как грубый фильтр нижних частот, который, в свою очередь, воздействует на амплитуду и фазу различных компонентов видеосигнала. Чем выше частоты сигнала, тем больше на них влияют неидеальные свойства кабеля.

Рис. 3 Представление коаксиального кабеля

Каждый кабель имеет однородное строение и собственный характеристический импеданс (полное сопротивление), который определяется элементами R, L, С и G на единицу длины.

Главное преимущество несимметричной передачи видеосигнала основано на том, что характеристический импеданс передающей среды не зависит от частоты (это относится, главным образом, к средним и высоким частотам), в то время как сдвиг фазы пропорционален частоте.

Амплитудные и фазовые характеристики коаксиального кабеля на низких частотах в большой степени зависят от самой частоты, но так как в подобных случаях длина кабеля достаточно мала по сравнению с длиной волны сигнала, то влияние на передачу сигнала оказывается незначительным.

Когда характеристический импеданс коаксиального кабеля соответствует выходному импедансу источника видеосигнала и входному импедансу приемного устройства, происходит максимальная передача энергии между источником и приемником, такая линия передачи называется согласованной.

Для высокочастотных сигналов, каким является видеосигнал, согласование полного сопротивления имеет первостепенную важность.

Для высокочастотных сигналов, каким является видеосигнал, согласование полного сопротивления имеет первостепенную важность. Когда импеданс не согласован, видеосигнал целиком или частично отражается назад к источнику, воздействуя не только на выходной каскад, но и на качество изображения. Отражение 100% сигнала происходит, когда конец кабеля либо замкнут накоротко, либо оставлен открытым (незамкнут). Вся (100%) энергия сигнала (напряжение, умноженное на ток) передается только тогда, когда есть согласование между источником, средствами передачи и приемником. Вот почему последний элемент в цепи видеосигналов всегда заканчивается нагрузкой в 75 Ом, которую называют терминатором (см. рис. 4).

СОВЕТ
Для гарантированного согласования между источником, средствами передачи и приемником последним элементом в коаксиальной линии включайте 75-Омный терминатор.


Рис. 4. Элементы конструкции коаксиальной линии

В телевидении для всего оборудования, передающего или принимающего видеосигналы, принят характеристический импеданс 75 Ом. Поэтому нужно использовать коаксиальный кабель с полным сопротивлением 75 Ом. Но производители выпускают и другое оборудование, например, с импедансом 50 Ом (которое в отдельных случаях используется для вещательного или ВЧ-оборудования), но тогда между такими источниками и 75-омными приемниками должны использоваться преобразователи импеданса (пассивные или активные).

75 Ом коаксиального кабеля – это комплексное сопротивление, определяемое отношением напряжения/тока в каждой точке кабеля. Это не активное сопротивление, и поэтому его нельзя измерить обычным мультиметром.

Полное сопротивление коаксиального кабеля определяется по формуле:

Характеристический импеданс не зависит от длины кабеля и частоты, но зависит от емкости и индуктивности на единицу длины.

Эта формула означает, что характеристический импеданс не зависит от длины кабеля и частоты, но зависит от емкости и индуктивности на единицу длины. Однако, это не так, если длина кабеля превышает 200 метров. В этом случае сопротивление и емкость имеют значение и оказывают влияние на видеосигнал.

Потери в коаксиальном кабеле складываются из двух составляющих: диэлектрические потери и потери в проводниках. Потери в изоляции зависят только от её диэлектрических свойств и не зависят от размера кабеля. Потери в проводниках жестко связаны с их размерами, причем в большей мере с сечением центрального проводника, т.к. основная часть электромагнитного поля распространяется в кабеле вдоль него, сильно убывая по направлению к экрану. Очевидно, что с увеличением размеров кабеля концентрация поля вокруг центрального проводника уменьшается, следовательно, уменьшаются и потери.

Потери в коаксиальном кабеле складываются из двух составляющих: диэлектрические потери и потери в проводниках.

Отклонения погонного волнового сопротивления кабельной линии выражают с помощью возвратных потерь .

Оценка режима работы линии характеризуется коэффициентом бегущей волны (КБВ) , который характеризует собой степень согласования линии с нагрузкой. Если КБВ равен единице, линия полностью согласована с нагрузкой. На практике таких линий не бывает из-за невозможности идеального согласования нагрузки с линией.

Величина, обратная коэффициенту бегущей волны, называется коэффициентом стоячей волны .

Понятно, что однородность кабеля по длине имеет большое значение для соответствия требованиям характеристического импеданса. Качество кабеля зависит от точности и однородности центральной жилы, диэлектрика и экрана. Эти факторы определяют значения С и L на единицу длины кабеля. Вот почему надо уделить особое внимание прокладке кабеля и его концевой заделке.

Правила прокладки коаксиального кабеля

  • Петли и изгибы нарушают однородность кабеля. Это приводит к высокочастотным потерям, то есть потере мелких деталей изображения, а также удвоению изображения из-за отражений сигнала. Качество изображения будет лучше, если изгиб петли будет в 10 раз больше диаметра коаксиального кабеля. Это равносильно высказыванию: «радиус петли должен быть не меньше 5 диаметров или 10 радиусов кабеля.
  • При прокладке коаксиального кабеля следуйте указаниям производителя о допустимых радиусах изгиба и рекомендуемом расстоянии между местами крепления.
  • При прокладке не разбрасывайте кабель по полу. Если случайно наступить на него или поставить тяжелый предмет, передача сигнала резко ухудшится.
  • Протягивая кабель, не прикладывайте к нему больших механических усилий, не пытайтесь протянуть через маленькое отверстие в стене или узкий короб. Это может привести к деформации или внутреннему обрыву центральной жилы и экранирующей оплетки.
  • Не прокладывайте коаксиальный кабель рядом с проводами электропитания и другими источниками электромагнитных помех.
  • Разрыв кабеля посередине и заделка образовавшихся концов приведет некоторой потере сигнала, особенно, если концы заделаны плохо или использованы некачественные BNC-разъемы. Хорошая заделка дает потерю сигнала всего в 0,3 – 0,5 дБ. Если на одном кабеле не слишком много заделок, то сигнал пострадает незначительно.
  • Для перехода с разъема на разъем пользуйтесь специальными переходниками (рис. 5).


Рис. 5 Переходники для видеосигнала

1 – BNC-вилка на RCA-розетку; 2 – BNC- розетка на RCA-вилку; 3 – BNC-розетка-розетка; 4 – RCA- розетка-розетка; 5 – BNC-вилка на Т-образный разветвитель с двумя BNC-розетками; 6 – BNC-вилка на Y-образный разветвитель с двумя BNC-розетками; 7 – BNC-розетка с терминатором 75 Ом; 8 – 3,5-мм стереофонический штекер на разветвитель с двумя RCA-розетками.

Степень искажения синусоидальных сигналов линиями связи оценивается по таким характеристикам, как затухание и полоса пропускания .

Затухание показывает, насколько уменьшается мощность эталонного синусоидального сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.

Затухание сигнала на 100 футов длины некоторых популярных зарубежных кабелей показано в таблице 1.

Таблица 1. Затухание сигнала в коаксиальных кабелях

Тип кабеля Волновое сопротивление (Ом) Затухание сигнала на 100 футов длины, дБ
Частоты, МГц 1 10 100 1000
RG-59/U 72 0,6 1,1 3,4 12
RG-6/U 72 0,4 0,8 2,7 9,8
RG-11/U 72 0,2 0,4 1,3 5,2
RG-58/U 50 0,4 1,3 4,5 18,1
RG-8/U 50 0,2 0,5 1,5 4,8

СОВЕТ
При выборе марки коаксиального кабеля для инсталляции всегда следите за тем, чтобы его полоса пропускания превышала ширину спектра передаваемого сигнала.

Шум и электромагнитные помехи

То, насколько хорошо экран коаксиального кабеля защищает центральную жилу от шума и ЭМП, зависит от процента экранирования. Как правило, производители указывают в спецификациях цифры от 90 до 99%. Но имейте в виду, что даже если обещано 100% экранирование, невозможно получить защиту от внешних наводок на все 100%. Проникновение ЭМП внутрь коаксиального кабеля зависит от используемой частоты.

То, насколько хорошо экран коаксиального кабеля защищает центральную жилу от шума и ЭМП, зависит от процента экранирования.

Теоретически, успешно подавляются только частоты выше 50 кГц – главным образом, из-за ослабления скин-эффекта. Все частоты ниже этой в меньшей или большей степени наводят в экране электроток. Насколько силен электроток, зависит от напряженности магнитного поля. Понятно, что нас, прежде всего, интересует излучение тока промышленной частоты (50 или 60 Гц), окружающее почти все технические устройства.

Вот почему возникают проблемы, если коаксиальный кабель проведен параллельно проводам и кабелям электросети. Величина наведенного напряжения в центральной жиле коаксиального кабеля зависит, во-первых, от силы тока на данной линии электропитания. Во-вторых, она зависит от того, насколько далеко коаксиальный кабель пролегает от силового кабеля. И, наконец, она зависит от того, на какой протяженности эти кабели пролегают вместе. Иногда соседство на протяжении 100 м не оказывает никакого влияния, но если по силовому кабелю течет большой ток, то даже 50 м могут сказаться на качестве сигнала. При монтаже постарайтесь (всегда, когда это возможно) сделать так, чтобы силовые и коаксиальные кабели не проходили очень близко друг к другу. Для ощутимого уменьшения ЭМП необходимо, чтобы расстояние между ними составляло хотя бы 30 см.

На экране монитора наводки от электросети имеют вид нескольких жирных горизонтальных полос, медленно сползающих вверх или вниз. Частота сползания определяется разницей между частотой полей видеосигнала и промышленной частотой и может составлять от 0 до 1 Гц. В результате на экране появляются неподвижные или очень медленно перемещающиеся полосы.

Конструкция коаксиальных кабелей

Как устроен коаксиальный кабель, знают все мало-мальски связанные с радиотехникой люди. Однако некоторые аспекты их конструкции нередко вызывают досадные ошибки. Например, многие путают изоляцию коаксиального кабеля с его оболочкой.

В радиочастотных коаксиальных кабелях изоляцией принято называть конструкцию, изолирующую внутренний проводник от внешнего, а вот тот материал, которым покрывают кабель снаружи, называется оболочкой.

В радиочастотных коаксиальных кабелях изоляцией принято называть конструкцию, изолирующую внутренний проводник от внешнего.

Обычно в каталогах и прайс-листах в графе «Диаметр» указывается диаметр коаксиального кабеля по изоляции без учета толщины оплетки и оболочки. Поэтому, если вам важен наружный диаметр кабеля (к примеру, для прокладки его по заранее смонтированным коробам определенного размера), следует заранее его уточнить.

Медь – один из лучших проводников для коаксиального кабеля. Только золото и серебро обладают более высокими эксплуатационными показателями (сопротивление, коррозия), но для производства кабеля они слишком дороги. Многие полагают, что лучшие кабели получаются из покрытой медью стали, но это не так. Покрытая медью сталь просто дешевле и, возможно, жестче, но для длинных кабелей лучше использовать медь. Омедненные стальные коаксиальные кабели приемлемы для коллективной антенны, где передаваемые сигналы ВЧ-модулированы (VHF или UHF, MB или УВЧ). А именно, на более высоких частотах так называемый скин-эффект (поверхностный эффект) проявляется сильнее: фактический сигнал перетекает на медную поверхность проводника (не экрана, а центрального проводника).

СОВЕТ
При выборе марки коаксиального кабеля для инсталляции отдавайте предпочтение кабелям с медными жилами.

По степени жесткости коаксиальные кабели можно разделить на 4 группы:

  • гибкие;
  • полугибкие;
  • полужесткие;
  • жесткие.

К гибким относят кабели, выдерживающие до 50 000 перегибов и более. У таких кабелей экраном служит оплетка из тонких проволок. Так как оплетка – не сплошной проводник и имеет существенное расстояние между проволоками, то через отверстия происходит «просачивание» электромагнитного поля наружу. Кроме того, для электрического тока оплетка представляет собой огромное количество контактов между проволоками, что ведет к увеличению ее сопротивления и, в конечном счете, увеличивает затухание сигнала в кабелях этого типа.

Гибкие кабели не подходят для передачи сигналов на расстояния, превышающие 50 м.

В полугибких коаксиальных кабелях для повышения степени экранирования и уменьшения электрического сопротивления и, следовательно, затухания, на изоляцию сначала накладывается металлическая фольга, а поверх нее – оплетка. У таких кабелей затухание значительно ниже, чем у гибких, однако они гораздо менее гибкие. Такие кабели широко используются в сетях кабельного телевидения, а в радиотехнических системах широкого применения не нашли.

Полужесткие коаксиальные кабели имеют сплошной сварной внешний проводник. В 95% конструкций этот проводник имеет спиральный или кольцевой гофр. Кабали этого типа имеют низкий коэффициент затухания и отличное экранирование. В зависимости от размеров и материала изоляции они могут обеспечивать передачу довольно большой мощности (до 5 кВт на частоте 100 МГц для отечественного кабеля РК50-17-51).

Жесткие коаксиальные кабели, больше похожие на водопроводные трубы, чем на радиочастотные кабели, предназначены в основном для передачи сигналов большой мощности.

СОВЕТ
При выборе коаксиального кабеля для инсталляции используйте мягкие кабели только для джамперов, а основную линию выполняйте из полугибких кабелей.

Необходимо отметить, что радиочастотные кабели, находящиеся большую часть времени на открытых пространствах (радиомачтах, крышах и т.д.), должны быть устойчивы к повышенным и пониженным температурам и их перепадам, к воздействию влаги и солнечного излучения. Для повышения механической прочности некоторые коаксиальные кабели снабжаются металлическим тросом, принимающим на себя основные нагрузки.

Радиочастотные кабели, находящиеся большую часть времени на открытых пространствах (радиомачтах, крышах и т.д.), должны быть устойчивы к повышенным и пониженным температурам и их перепадам, к воздействию влаги и солнечного излучения.

Как уже говорилось, обычный коаксиальный кабель состоит из центрального проводника, внутреннего диэлектрика, экрана и внешней оболочки (Рис. 1).

Центральный проводник кабеля предназначен для передачи сигнала из одной точки в другую. Его делают из материалов, хорошо проводящих электрический сигнал. Обычно используется медь, которая подходит для этих целей по своим электрическим, механическим и стоимостным параметрам. Центральный проводник может быть как одножильным, так и многожильным.

Одножильный – это центральный проводник, выполненный в виде одного прямого проводника. Одножильный проводник хорошо формуется, но не очень гибкий. Поэтому кабели с одножильным проводником обычно используются в стационарных инсталляциях.

Витой многожильный – представляет собой проводник, состоящий из множества тонких проводников, свитых вместе. Эти кабели гибкие, они легче и применяются в основном в мобильных инсталляциях. Однако характеристики такого кабеля будут несколько ниже, чем кабеля с одножильным проводником того же типоразмера.

Внутренний диэлектрик , называемый также внутренней изоляцией кабеля, выполняет в коаксиальных кабелях важную роль. Прежде всего, это материал, который изолирует центральный проводник от экрана. Но, кроме того, он определяет импеданс и емкость кабеля. Обычно в кабелях общего назначения используется полиэтилен, а для производства негорючих кабелей фторсодержащие полимеры.

Дешевые кабели имеют диэлектрик из твердого полиэтилена. Более серьезные производители используют вспененный полиэтилен, который обеспечивает более низкое погонное затухание сигнала в кабеле на высоких частотах.

Стоит заметить, что некоторые производители вспенивают диэлектрик химическим способом. В результате получается низкоплотный полиэтиленовый компаунд, подверженный механическим повреждениям и нестабильный к воздействию окружающей среды в виде температуры и влажности.

Наибольшее качество кабеля получается с физически вспененным диэлектриком (gas injected foam polyethylene). Он содержит до 60% воздушных пузырьков, за счет чего уменьшается затухание высоких частот сигнала. По прочности физически вспененный полиэтилен не отличается от обычного твердого невспененного полиэтилена, обеспечивая необходимую гибкость и устойчивость к механическим воздействиям. И, наконец, обладая высокой стойкостью к температурным колебаниям и влажности, физически вспененный диэлектрик обеспечит стабильность параметров и длительную эксплуатацию кабеля.

СОВЕТ
При выборе марки коаксиального кабеля для инсталляции отдавайте предпочтение кабелям с физически вспененным диэлектриком.

Экран выполняет две важных роли. Он работает как второй проводник, подключенный к общему земляному проводу оборудования. В то же время он экранирует сигнальный проводник от посторонних излучений. Существуют различные методы экранировки для кабелей, выполняющих различные задачи. Это экран из фольги, плетеный экран и комбинации из фольги и оплетки.

Оплетка – экран, который изготавливается из множества тонких проводников, сплетенных в виде сетки, охватывающей центральный проводник с внутренним диэлектриком. Оплетка обычно обладает меньшим сопротивлением, чем фольга и обладает лучшей устойчивостью к постороннему электромагнитному полю и электромагнитным наводкам. Оплетка может сочетаться с другими видами экранов, например, с алюминиевой или медной фольгой для обеспечения необходимого процента экранировки.

Фольга может обеспечить до 100% экранировки в сочетании с оплеткой. Учитывая, что оплетка может обеспечить эффективность экранировки до 90%, чтобы получить 100% необходимо две оплетки, что существенно увеличивает стоимость кабеля, его вес и ухудшает гибкость. Гораздо легче добиться 100% эффективности экранировки можно сочетанием оплетки и фольги.

Необходимую защиту внутренних компонентов кабеля обеспечивает внешняя оболочка . Оболочка защищает кабель от климатического, химического, и воздействия солнечного света. По типу оболочки кабели можно разделить на кабели стандартного и специального исполнения.

Стандартный кабель имеет обычную, чаще всего поливинилхлоридную оболочку, которая защищает кабель (или мультикор) от механических воздействий и влаги, а так же играет роль электрической изоляции.

Для передачи RGBHV, S-Video и компонентных сигналов несколько коаксиальных кабелей могут объединяться в мультикор (рис. 6) с общей оболочкой. Количество коаксиальных кабелей в мультикоре может быть от двух до шести, кроме того, в мультикор могут добавляться балансные аудиопары и силовые проводники, что делает их еще более универсальными.

Заполненный (Plenum) – стандартная инсталляция предполагает прокладку кабеля через стены и потолки. Возможное возгорание внутри здания предъявляет свои особые требования к оболочке кабелей. Кабели типа Plenum имеют огнестойкую оболочку, в составе которой используются специальные компаунды. Это обеспечивает низкую горючесть и дымовыделение в случае, если кабель будет подвергнут воздействию огнем. Такой кабель может быть проложен без трубопровода, что снижает затраты на инсталляцию.

Галогенонесодержащий – низкое выделение дыма и паров, отсутствие галогенов в материале оболочки кабеля требуют европейские правила техники безопасности (IEC33203 тест на горючесть, IEC61034 тест на дымовыделение, IEC754-1 коррозионная стойкость).

Для передачи RGBHV, S-Video и компонентных сигналов несколько коаксиальных кабелей могут объединяться в мультикор (рис. 6) с общей оболочкой. Количество коаксиальных кабелей в мультикоре может быть от двух до шести, кроме того, в мультикор могут добавляться балансые аудиопары и силовые проводники, что делает их еще более универсальными.


Рис. 6 Мультикор в разрезе

СОВЕТ
Для передачи большого количества сигналов разных типов по одному кабелю используйте мультикоры.

При монтаже необходимо обратить особое внимание на предотвращение попадания влаги внутрь кабеля. Особенно остро эта проблема стоит при использовании кабелей с кордельной изоляцией. Прежде всего необходимо герметизировать (влагозащищать) кабель при установке соединителей.

Отдельный класс коаксиальных кабелей составляют кабели для подземного размещения.

При построении антенно-фидерного тракта (АФТ) обычно придерживаются следующей схемы. В качестве основной передающей системы выбирается полужесткий кабель с хорошими характеристиками. Непосредственно же к радиоаппаратуре на одном конце и антенне на другом подключаются с помощью коротких отрезков гибкого кабеля, т.н. джамперов (рис. 7). Такая схема удобна и выгодна экономически, т.к. если подключать полужесткий кабель напрямую к устройствам, то из-за большого радиуса изгиба пришлось бы использовать как минимум на 6 м кабеля больше, а это дороже, чем два коротких джампера, да и обслуживать оборудование без джамперов попросту неудобно. Однако при работе на достаточно высоких частотах (800-900 МГц) даже короткие джамперы на гибких кабелях могут значительно ослаблять и искажать сигнал. Поэтому целесообразнее в качестве джамперов в этой части АФТ использовать полужесткий тонкий кабель, т.к. разница в цене между ними относительно всего АФТ незначительна.


Рис. 7 Коаксиальный джампер

Существует три типа BNC-разъемов: с резьбой, запаиваемые и с обжимкой.

Еще одним немаловажным элементом при подключении коаксиального кабеля к аппаратуре является разъем (соединитель). При подборе этого на первый взгляд нехитрого устройства необходимо руководствоваться двумя критериями: хорошими электрическими характеристиками и удобством заделки на кабель.

Разъемы

В телевидении широко используется концевая заделка коаксиального кабеля, которая называется BNC-разъемом (по первым буквам фамилий создателей Bayonet-Neil-Concelman). Существует три типа BNC-разъемов: с резьбой, запаиваемые и с обжимкой.


Рис. 8 Разъем типа BNC (кабельный)

Конструктивно разъем выглядит следующим образом: внутри металлической гильзы с накидной фиксирующей муфтой (при ее повороте разъемное соединение надежно фиксируется) есть тонкий центральный сигнальный контакт. С другой стороны гильзы находится контактная трубка для экранной оплетки. Сигнальный проводник проходит через эту трубку и вставляется в штырек, который входит в центральный контакт. На контактную трубку надевается другая трубка, которая, собственно говоря, и обжимается специальным инструментом. Центральный контакт бывает никелевым, посеребренным и позолоченным. Сама гильза, чаще всего, никелированная.

СОВЕТ
Опыт доказывает, что обжимные BNC-разъемы – самые надежные. Для них требуются специальные и дорогие обжимные инструменты, но траты на них себя оправдывают. Больше 50% проблем, возникающих при установке систем, являются результатом плохой или неправильной заделки кабеля.

Самые распространенные BNC-разъемы – штекерные (штыревые контакт-соединения, «папы»). Существуют также гнездовые контакт-соединения («мамы»), угловые адаптеры, адаптеры BNC-BNC (их часто называют «barrels»), 75-омные концевые заделки (или «фиктивные нагрузки»), адаптеры BNC к другим типам соединений и т.д.

Для бытовой аппаратуры коаксиальный кабель может быть разделан в соединитель типа RCA (известный еще как «тюльпан», из-за схожей с цветком формы соединителей старых выпусков). Это очень простой и дешевый соединитель, однако он рассчитан исключительно на применение в комнатных условиях и для профессиональной аппаратуры не подходит.


Рис. 9

Применяются разъемы RCA для несимметричной передачи аналоговых сигналов линейного уровня, в основном от различных записывающих устройств. Кроме того, этот разъем находит применение в цифровом интерфейсе формата SPDIF. Известная фирма Canare производит разъемы RCA обжимного типа для установки на коаксиальные провода.

RCA – изначально «неправильный» разъем, так как соединение сигнального контакта штеккера с сигнальным контактом гнезда происходит раньше, чем соединение земляных контактов. Некоторые фирмы, например, Neutrik, производят штеккеры типа RCA с выдвинутым подпружиненным земляным контактом, который соединяется с земляным контактом гнезда раньше, чем сигнальный контакт.

СОВЕТ
По возможности избегайте применения разъемов типа RCA.

Все разъемы RCA можно разделить на две группы. Одни предназначены для передачи аналогового сигнала, а вторые – для передачи цифрового сигнала SPDIF, вследствие чего они обладают характеристическим импедансом 75 Ом. Распайка (или обжимка) и тех, и других разъемов совершенно однозначная: центральный контакт – сигнальный, а цилиндр вокруг центрального контакта – общий.

Правила разделки разъемов

  • Для разделки разъемов никогда не пользуйтесь подручным инструментом – вы легко можете повредить центральную жилу и экран кабеля. Пользуйтесь специальным инструментом для снятия изоляции с кабеля и опрессовки, показанным на рис. 7 и 8.
  • Подбирайте кабельные разъемы, соответствующие выбранному типу кабеля. Если кабель окажется толще диаметра в хвостовике разъема, его не удастся собрать, а если тоньше – первый же случайный рывок выдернет кабель из разъема.
  • При разделке не прилагайте больших физических усилий. Если разъем не собирается, значит, вы делаете что-то не так.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта