Главная » Водоснабжение » Исследование и построение графиков функции с решением. Схема построения графика функции исследование функций на экстремум с помощью производных высшего порядка вычисление корней уравнений методами хорд и касательных. Вот что получилось

Исследование и построение графиков функции с решением. Схема построения графика функции исследование функций на экстремум с помощью производных высшего порядка вычисление корней уравнений методами хорд и касательных. Вот что получилось

Сегодня мы предлагаем вместе с нами исследовать и построить график функции. После внимательного изучения данной статьи вам не придется долго потеть над выполнением подобного рода задания. Исследовать и построить график функции нелегко, работа объемная, требующая максимального внимания и точности вычислений. Для облегчения восприятия материала мы будем поэтапно изучать одну и ту же функцию, объясним все наши действия и вычисления. Добро пожаловать в удивительный и увлекательный мир математики! Поехали!

Область определения

Для того чтобы исследовать и построить график функции, необходимо знать несколько определений. Функция является одним из основных (базовых) понятий в математике. Она отражает зависимость между несколькими переменными (двумя, тремя и более) при изменениях. Так же функция показывает зависимость множеств.

Представьте, что у нас есть две переменные, которые имеют определенный диапазон изменения. Так вот, у - это функция от х, при условии, что каждому значению второй переменной соответствует одно значение второй. При этом переменная у - зависима, ее и называют функцией. Принято говорить, что переменные х и у находятся в Для большей наглядности данной зависимости строят график функции. Что такое график функции? Это множество точек на координатной плоскости, где каждому значению х соответствует одно значение у. Графики могут быть разные - прямая линия, гипербола, парабола, синусоида и так далее.

График функции невозможно построить без исследования. Сегодня мы научимся проводить исследование и построим график функции. Очень важно в ходе исследования на наносить пометки. Так справиться с задачей будет намного проще. Наиболее удобный план исследования:

  1. Область определения.
  2. Непрерывность.
  3. Четность или нечетность.
  4. Периодичность.
  5. Асимптоты.
  6. Нули.
  7. Знакопостоянство.
  8. Возрастание и убывание.
  9. Экстремумы.
  10. Выпуклость и вогнутость.

Начнем с первого пункта. Найдем область определения, то есть на каких промежутках существует наша функция: у=1/3(х^3-14х^2+49х-36). В нашем случае, функция существует при любых значениях х, то есть область определения равна R. Записать это можно следующим образом хÎR.

Непрерывность

Сейчас мы с вами будем исследовать функцию на разрыв. В математике термин «непрерывность» появился в результате изучения законов движения. Что является бесконечным? Пространство, время, некоторые зависимости (примером может служить зависимость переменных S и t в задачах на движение), температура нагреваемого объекта (воды, сковороды, термометра и так далее), непрерывная линия (то есть та, которую можно нарисовать, не отрывая от листа карандаш).

Непрерывным считается график, который не разрывается в некоторой точке. Одним из самых наглядных примеров такого графика является синусоида, которую вы можете увидеть на картинке в данном разделе. Функция непрерывна в некоторой точке х0, если соблюден ряд условий:

  • в данной точке определена функция;
  • правый и левый предел в точке равны;
  • предел равен значению функции в точке х0.

При несоблюдении хотя бы одного условия говорят, что функция терпит разрыв. А точки, в которых разрывается функция, принято называть точками разрыва. Примером функции, которая при графическом отображении будет «разрываться», может служить: у=(х+4)/(х-3). При этом у не существует в точке х=3 (так как на нуль делить нельзя).

В функции, которую исследуем мы (у=1/3(х^3-14х^2+49х-36)) оказалось все просто, так как график будет являться непрерывным.

Четность, нечетность

Теперь исследуйте функцию на четность. Для начала немного теории. Четной называют ту функцию, которая удовлетворяет условию f(-x)=f(x) при любом значении переменной х (из области значений). Примерами могут служить:

  • модуль х (график похож на галку, биссектриса первой и второй четверти графика);
  • х в квадрате (парабола);
  • косинус х (косинусоида).

Обратите внимание на то, что все эти графики симметричны, если рассматривать это относительно оси ординат (то есть у).

А что же тогда называют нечетной функцией? Таковыми являются те функции, которые удовлетворяют условию: f(-х)=-f(х) при любом значении переменной х. Примеры:

  • гипербола;
  • кубическая парабола;
  • синусоида;
  • тангенсоида и так далее.

Обратите внимание на то, что данные функции имеют симметрию относительно точки (0:0), то есть начала координат. Исходя из того, что было сказано в данном разделе статьи, четная и нечетная функция должна обладать свойством: х принадлежит множеству определения и -х тоже.

Исследуем функцию на четность. Мы можем заметить, что она не подходит ни под одно из описаний. Следовательно, наша функция не является ни четной, ни нечетной.

Асимптоты

Начнем с определения. Асимптота - это кривая, которая максимально приближена к графику, то есть расстояние от некоторой точки стремится к нулю. Всего выделяют три вида асимптот:

  • вертикальные, то есть параллельные оси у;
  • горизонтальные, то есть параллельные оси х;
  • наклонные.

Что касается первого вида, то данные прямые стоит искать в некоторых точках:

  • разрыв;
  • концы области определения.

В нашем случае функция непрерывна, а область определения равна R. Следовательно, вертикальные асимптоты отсутствуют.

Горизонтальная асимптота есть у графика функции, который отвечает следующему требованию: если х стремится к бесконечности или минус бесконечности, а предел равен некоторому числу (например, а). В данном случае у=а - это и есть горизонтальная асимптота. В исследуемой нами функции горизонтальных асимптот нет.

Наклонная асимптота существует только в том случае, если соблюдены два условия:

  • lim (f(x))/x=k;
  • lim f(x)-kx=b.

Тогда ее можно найти по формуле: у=kx+b. Опять же, в нашем случае наклонных асимптот нет.

Нули функции

Следующим этапом нам необходимо исследовать график функции на нули. Очень важно отметить и то, что задание, связанное с нахождением нулей функции, встречается не только при исследовании и построении графика функции, но и как самостоятельное задание, и как способ решения неравенств. От вас могут потребовать найти нули функции на графике или использовать математическую запись.

Нахождение данных значений поможет вам более точно составить график функции. Если говорить простым языком, то нуль функции - это значение переменной х, при которой у=0. Если вы ищите нули функции на графике, то стоит обратить внимание на точки, в которых происходит пересечение графика с осью абсцисс.

Чтобы найти нули функции, необходимо решить следующее уравнение: у=1/3(х^3-14х^2+49х-36)=0. После проведения необходимых вычислений, мы получаем следующий ответ:

Знакопостоянство

Следующий этап исследования и построения функции (графика) - это нахождение промежутков знакопостоянства. Это значит, что мы должны определить, на каких промежутках функция принимает положительное значение, а на каких - отрицательное. Это нам помогут сделать найденные в прошлом разделе нули функции. Итак, нам нужно построить прямую (отдельно от графика) и в правильном порядке распределить по ней нули функции от меньшего к большему. Теперь нужно определить, какой из полученных промежутков имеет знак «+», а какой «-».

В нашем случае, функция принимает положительное значение на промежутках:

  • от 1 до 4;
  • от 9 до бесконечности.

Отрицательное значение:

  • от минус бесконечности до 1;
  • от 4 до 9.

Это определить достаточно просто. Подставьте любое число из промежутка в функцию и посмотрите с каким знаком получился ответ (минус или плюс).

Возрастание и убывание функции

Для того чтобы исследовать и построить функцию, нам необходимо узнать, где график будет возрастать (идти вверх по Оу), а где будет падать (ползти вниз по оси ординат).

Функция возрастает только в том случае, если большему значению переменной х соответствует большее значение у. То есть х2 больше х1, а f(х2) больше f(x1). И совершенно обратное явление мы наблюдаем у убывающей функции (чем больше х, тем меньше у). Для определения промежутков возрастания и убывания необходимо найти следующее:

  • область определения (у нас уже есть);
  • производную (в нашем случае: 1/3(3х^2-28х+49);
  • решить уравнение 1/3(3х^2-28х+49)=0.

После вычислений мы получаем результат:

Получаем: функция возрастает на промежутках от минуса бесконечности до 7/3 и от 7 до бесконечности, а убывает на промежутке от 7/3 до 7.

Экстремумы

Исследуемая функция y=1/3(х^3-14х^2+49х-36) является непрерывной и существует при любых значениях переменной х. Точка экстремума показывает максимум и минимум данной функции. В нашем случае таковых не имеется, что значительно упрощает задачу построения. В противном случае так же находятся при помощи производной функции. После нахождения не забывайте отмечать их на графике.

Выпуклость и вогнутость

Продолжаем далее исследовать функцию y(x). Сейчас нам нужно проверить ее на выпуклость и вогнутость. Определения этих понятий достаточно тяжело воспринять, лучше все проанализировать на примерах. Для теста: функция выпуклая, если является неубывающей функции. Согласитесь, это непонятно!

Нам нужно найти производную от функции второго порядка. Мы получаем: у=1/3(6х-28). Теперь приравняем правую часть к нулю и решим уравнение. Ответ: х=14/3. Мы нашли точку перегиба, то есть место, где график меняет выпуклость на вогнутость или наоборот. На промежутке от минус бесконечности до 14/3 функция выпукла, а от 14/3 до плюс бесконечности - вогнута. Очень важно отметить и то, что точка перегиба на графике должна быть плавной и мягкой, никаких острых углов присутствовать не должно.

Определение дополнительных точек

Наша задача - исследовать и построить график функции. Мы закончили исследование, построить график функции теперь не составит труда. Для более точного и детального воспроизведения кривой или прямой на координатной плоскости можно найти несколько вспомогательных точек. Их вычислить довольно просто. Например, мы возьмем х=3, решаем полученное уравнение и находим у=4. Или х=5, а у=-5 и так далее. Дополнительных точек вы можете брать столько, сколько вам необходимо для построения. Минимум их находят 3-5.

Построение графика

Нам необходимо было исследовать функцию (x^3-14х^2+49х-36)*1/3=у. Все необходимые пометки в ходе вычислений были нанесены на координатной плоскости. Все что осталось сделать - построить график, то есть соединить все точки между собой. Соединять точки стоит плавно и аккуратно, это дело мастерства - немного практики и ваш график будет идеальным.

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол


Стоит задача: провести полное исследование функции и построить ее график .

Каждый студент прошел через подобные задачи.

Дальнейшее изложение предполагает хорошее знание . Рекомендуем обращаться к этому разделу при возникновении вопросов.


Алгоритм исследования функции состоит из следующих шагов.

    Нахождение области определения функции.

    Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.

    В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

    (В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом:
    для корня четной степени, например, - область определения находится из неравенства ;
    для логарифма - область определения находится из неравенства ).

    Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.

    На границах области определения функция имеет вертикальные асимптоты , если в этих граничных точках бесконечны.

    В нашем примере граничными точками области определения являются .

    Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

    Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.

    Исследование функции на четность или нечетность.

    Функция является четной , если . Четность функции указывает на симметрию графика относительно оси ординат.

    Функция является нечетной , если . Нечетность функции указывает на симметрию графика относительно начала координат.

    Если же ни одно из равенств не выполняется, то перед нами функция общего вида.

    В нашем примере выполняется равенство , следовательно, наша функция четная. Будем учитывать это при построении графика - он будет симметричен относительно оси oy .

    Нахождение промежутков возрастания и убывания функции, точек экстремума.

    Промежутки возрастания и убывания являются решениями неравенств и соответственно.

    Точки, в которых производная обращается в ноль, называют стационарными .

    Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

    ЗАМЕЧАНИЕ (включать ли критические точки в промежутки возрастания и убывания).

    Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.

    Таким образом, чтобы определить промежутки возрастания и убывания функции

    • во-первых, находим производную;
    • во-вторых, находим критические точки;
    • в-третьих, разбиваем область определения критическими точками на интервалы;
    • в-четвертых, определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» - промежутку убывания.

    Поехали!

    Находим производную на области определения (при возникновении сложностей, смотрите раздел ).

    Находим критические точки, для этого:

    Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.

    Делаем вывод:

    Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.

    Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.

    В нашем примере точкой экстремума является точка х=0 . Значение функции в этой точке равно . Так как производная меняет знак с плюса на минус при прохождении через точку х=0 , то (0; 0) является точкой локального максимума. (Если бы производная меняла знак с минуса на плюс, то мы имели бы точку локального минимума).

    Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.

    Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.

    Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.

    Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.

    Таким образом, чтобы определить промежутки вогнутости и выпуклости функции :

    • во-первых, находим вторую производную;
    • во-вторых, находим нули числителя и знаменателя второй производной;
    • в-третьих, разбиваем область определения полученными точками на интервалы;
    • в-четвертых, определяем знак второй производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку вогнутости, знак «минус» - промежутку выпуклости.

    Поехали!

    Находим вторую производную на области определения.

    В нашем примере нулей числителя нет, нули знаменателя .

    Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.

    Делаем вывод:

    Точка называется точкой перегиба , если в данной точке существует касательная к графику функции и вторая производная функции меняет знак при прохождении через .

    Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.

    В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.

    Нахождение горизонтальных и наклонных асимптот.

    Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.

    Наклонные асимптоты ищутся в виде прямых , где и .

    Если k=0 и b не равно бесконечности, то наклонная асимптота станет горизонтальной .

    Кто такие вообще эти асимптоты?

    Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.

    Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.

    Для нашего примера

    - горизонтальная асимптота.

    На этом с исследование функции завершается, переходим к построению графика.

    Вычисляем значения функции в промежуточных точках.

    Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).

    Для нашего примера найдем значения функции в точках х=-2 , х=-1 , х=-3/4 , х=-1/4 . В силу четности функции, эти значения будут совпадать со значениями в точках х=2 , х=1 , х=3/4 , х=1/4.

    Построение графика.

    Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).

    Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.

    Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.

Графики некоторых элементарных функций можно строить с использованием графиков основных элементарных функций.

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Достаточно часто в курсе математического анализа можно встретить задание со следующей формулировкой: «исследовать функцию и построить график» . Данная формулировка говорит сама за себя и разбивает задачу на два этапа:

  • Этап 1: исследование функции;
  • Этап 2: построение графика исследуемой функции.

Первый этап наиболее объемный и включает в себя отыскание областей определения и значений, экстремумов функции, точек перегиба графика и т.д.

Полный план исследования функции $y=f(x)$, предваряющий цель построение графика, имеет следующие пункты:

  • Поиск области определения функции $D_{y} $ и области допустимых значений $E_{y} $ функции.
  • Определение вида функции: четная, нечетная, общего вида.
  • Определение точек пересечения графика функции с осями координат.
  • Нахождение асимптот графика функции (вертикальные, наклонные, горизонтальные).
  • Нахождение интервалов монотонности функции и точек экстремума.
  • Нахождение промежутков выпуклости, вогнутости графика и точек перегиба.

Поиск области определения функции $D_{y} $ подразумевает нахождение интервалов, на которых данная функция существует (определена). Как правило, данная задача сводится к отысканию ОДЗ (область допустимых значений), на основании которых формируется $D_{y} $.

Пример 1

Найти область определения функции $y=\frac{x}{x-1} $.

Найдем ОДЗ рассматриваемой функции, т.е. значения переменной, при которых знаменатель не обращается в ноль.

ОДЗ: $x-1\ne 0\Rightarrow x\ne 1$

Запишем область определения: $D_{y} =\{ x\in R|x\ne 1\} $.

Определение 1

Функция $y=f(x)$ является четной в случае, если выполняется следующее равенство $f(-x)=f(x)$ $\forall x\in D_{y} $.

Определение 2

Функция $y=f(x)$ является нечетной в случае, если выполняется следующее равенство $f(-x)=-f(x)$ $\forall x\in D_{y} $.

Определение 3

Функция, не являющаяся ни четной, ни нечетной, называется функцией общего вида.

Пример 2

Определить вид функций: 1) $y=\frac{x}{x-1} $, 2) $y=\frac{x^{2} }{x^{2} -1} $; 3) $y=\frac{x}{x^{2} -1} $.

1) $y=\frac{x}{x-1} $

$f(-x)\ne f(x);f(-x)\ne -f(x)$, следовательно, имеем функцию общего вида.

2) $y=\frac{x^{2} }{x^{2} -1} $

$f(-x)=f(x)$, следовательно, имеем четную функцию.

3) $y=\frac{x}{x^{2} -1} $.

$f(-x)\ne -f(x)$, следовательно, имеем нечетную функцию.

Определение точек пересечения графика функции с осями координат включает нахождение точек пересечения: с осью ОХ ($y=0$), с осью OY ($x=0$).

Пример 3

Найти точки пересечения с осями координат функции $y=\frac{x+2}{x-1} $.

  1. с осью ОХ ($y=0$)

$\frac{x+2}{x-1} =0\Rightarrow x+2=0\Rightarrow x=-2$; получаем точку (-2;0)

  1. с осью ОY ($x=0$)

$y(0)=\frac{0+2}{0-1} =-2$, получаем точку (0;-2)

На основе результатов, полученных на этапе исследования функции, строится график. Иногда для построения графика функции недостаточно точек, полученных на первом этапе, тогда необходимо найти дополнительные точки.

Пример 4

Исследовать функцию и построить ее график: $y=x^{3} -6x^{2} +2x+1$.

  1. Область определения: $D_{y} =\{ x|x\in R\} $.
  2. Область значений: $E_{y} =\{ y|y\in R\} $.
  3. Четность, нечетность функции :\ \

Функция общего вида, т.е. не является ни четной, ни нечетной.

4) Пересечение с осями координат:

    с осью OY: $y(0)=0^{3} -6\cdot 0^{2} +2\cdot 0+1=1$, следовательно, график проходит через точку (0;1).

    с осью OХ: $x^{3} -6x^{2} +2x+1=0$ (рациональных корней нет)

5) Асимптоты графика:

Вертикальных асимптот нет, так как $D_{y} =\{ x|x\in R\} $

Наклонные асимптоты будем искать в виде $y=kx+b$.

$k=\mathop{\lim }\limits_{x\to \infty } \frac{y(x)}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -6x^{2} +2x+1}{x} =\infty $. Следовательно, наклонных асимптот нет.

6) Возрастание, убывание функции; экстремумы:

\ \[\begin{array}{l} {y"=0\Rightarrow 3x^{2} -12x+2=0} \\ {D=144-24=120} \\ {x_{1,2} =\frac{12\pm \sqrt{120} }{6} } \end{array}\]

Отметим точки на числовой оси, расставим знаки первой производной и отметим поведение функции:

Рисунок 1.

Функция возрастает на $\left(-\infty ;\frac{12-\sqrt{120} }{6} \right]$ и $\left[\frac{12+\sqrt{120} }{6} ;\infty \right)$, убывает на $\left[\frac{12-\sqrt{120} }{6} ;\frac{12+\sqrt{120} }{6} \right]$.

$x=\frac{12-\sqrt{120} }{6} $ - точка максимума; $y\left(\frac{12-\sqrt{120} }{6} \right)=1,172$

$x=\frac{12+\sqrt{120} }{6} $ - точка минимума; $y\left(\frac{12+\sqrt{120} }{6} \right)=-23,172$

7) Выпуклость, вогнутость графика:

\ \[\begin{array}{l} {y""=(3x^{2} -12x+2)"=6x-12} \\ {y""=0\Rightarrow 6x-12=0\Rightarrow x=2} \end{array}\]

Отметим точки на числовой оси, расставим знаки второй производной и отметим поведение графика функции:

Рисунок 2.

График направлен выпуклостью вверх на $(-\infty ;2]$, вниз на $

8) График функции:

Рисунок 3.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта