Главная » Фасад » Теорема о сумме моментов сил пары. Сложение пар сил в пространстве. Решение задач на определение опорных реакций

Теорема о сумме моментов сил пары. Сложение пар сил в пространстве. Решение задач на определение опорных реакций

Сложение пар производится алгебраическим суммированием их моментов:

М = М 1 + М 2 + …+ М n = ΣМ i

Условие равновесия системы пар, лежащих в одной пло­скости : для равновесия системы пар необходимо чтобы сумма моментов пар равнялась нулю:

ΣМ i = 0 (3.2)

Пример 3.1. Определить момент результирующей пары, эквивалентной системе трех пар, лежащих в одной плоскости (рис. 3.3). Первая пара F 1 = F¢ 1 = 2 кН, плечо h 1 = 1,25 м; вторая пара F 2 = F¢ 2 = 3 кН, плечо h 2 = 2 м; третья пара F 3 = F¢ 3 = 4,5 кН, плечо h 3 = 1,2 м.


Рис. 3.3

Момент силы относительно точки

Момент М о (F) силы F относительно точки О равен произведению силы на плечо. (рис. 3.4, а). Сила F стремится поворачи­вать плечо а вокруг точки О .

М о (F) = F× a, Н×м, (3.3)

где а - плечо силы F.

Плечо силы – этодлина перпенди­куляра а, опущенного из точки на линию действия силы

Рис. 3.4

Центр момента - точка О, относительно которой возникает момент.

Момент по­ложительный , если сила стре­мится вращать тело по часовой стрелке (рис. 3.4, а ), и отри­цательный - против часовой стрелки (рис. 3.4, б ).

Когда линия действия силы проходит через данную точку, момент силы относительно этой точ­ки равен нулю, так как плечо а = 0 (рис. 3.4, в ).

Лекция № 4

ОПРЕДЕЛЕНИЕ ОПОРНЫХ РЕАКЦИЙ

Опорные устройства балочных систем

1) Шарнирно-подвижная опора (рис. 4.1, а)- допускает поворот вокруг оси шарнира и линейное перемещение па­раллельно опорной плоскости. Направление опорной реакции - перпендикуляр к опорной плоскости. (рис. 5.1, б).

2) Шарнирно-неподвижная опора (рис, 4.1,б ) - допу­скает только поворот вокруг оси шарнира, но не допускает никаких ли­нейных перемещений. Опорная реакция R A раскладывается на две составляющие - R Ax и R Ay .

3) Жесткая заделка (защемление) (рис. 4.1,в)- не допускает ни линейных перемещений, ни поворота.В защемлении действуют две составляющие опорной реакции - R Ax , R Ay и реактивный момент М А.

а) б) в)

Рис. 4.1

Двухопорные балки имеют две опоры – одна опора шарнирно-неподвижная, вторая – шарнирно-подвижная. Шарнирно-подвижная опора необходима для компенсации перемещений балки при температурных расширениях балки из-за колебаний температуры, а также при возможной подвижке опоры, например, при осадке почвы.

Виды балок

Консоль – выступающая за опору не закрепленная часть балки (рис. 4.2, б, в).

1) Бесконсольные балки 2) Одноконсольные балки 3) Двухконсольные балки


Рис. 4.2

Виды нагрузок

1) Сосредоточенная сила (рис.4.3, а) – F - сила, приложенная в одной точке.

Рис. 4.3

(рис.4.3, б) – нагрузка, равномерно распределенная на некоторой длине l . Характеризуется интенсивностью q , единица измерения- Н/м или кН/м.

При решении задач равномерно распределенная нагрузка интенсивностью q заменяется одной силой F q = q×l , которая является равнодействующей силой и прикладывается посередине длины l .

3) Пара сил или момент (рис. 4.3, в) – М, Н×м.

Равновесие плоской системы сил

Условие равновесия произвольной плоской системы сил - произвольная плоская система сил находится в равно­весии, когда алгебраические суммы проекций сил на координатные оси и сумма моментов равны нулю:

Первый вид:Второй вид:Третий вид:

SF ix = 0 S F ix = 0 SМ А = 0

SF i у = 0 SМ А = 0 SМ В = 0

SМ о = 0 SМ В = 0 SМ С = 0

Решение задач на определение опорных реакций

Для решения задач надо составить столько уравнений равновесия, сколько неизвестных сил в задаче. Для определения опорных реакций двухопорной балки (R Ax , R Ay и R В) необходимо составить три уравнения равновесия второго вида : SF ix = 0, SМ А = 0, SМ В = 0.

Пример 4.1 . Определить опорные реакции балки, изображенной на рис. 4.4, а , нагруженной парой с моментом М = 10 кН×м, сосредоточенной силой F = 4 кН и распределенной нагрузкой интенсивностью q = 1,5 кН/м.

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Теорема о сложении пар сил . Две пары сил, действующих на одно и то же твердое тело, и лежащие в пересекающихся плоскостях, можно заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Доказательство: Пусть имеются две пары сил, расположенные в пересекающихся плоскостях. Пара сил в плоскости характеризуется моментом, а пара сил в плоскости характеризуется моментом.Расположим пары сил так, чтобы плечо пар было общим и располагалось на линии пересечения плоскостей. Складываем силы, приложенные в точке А и в точке В, . Получаем пару сил.

Условия равновесия пар сил.

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необхо-димо и достаточно, чтобы момент эквивалентной пары сил равнялся нулю.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.

20.динамические дифференциальные уравнения относительно движения материальной точки. Динамическая теорема Кориолиса

Дифференциальные уравнения движения свободной материальной точки.

Для вывода уравнений воспользуемся второй и четвертой аксиомами динамики. Согласно второй аксиоме ma = F (1)

где, по четвертой аксиоме, F является равнодействующей всех сил, приложенных к точке.

С учетом последнего замечания выражение (1) часто называют основным уравнением динамики. По форме записи оно представляет собой второй закон Ньютона, где одна сила, согласно аксиоме независимости действия сил, заменена равнодействующей всех сил, приложенных к материальной точке. Вспомнив, что a = dV / dt = d2r / dt = r"", получаем из (1) дифференциальное уравнение движения материальной точки в векторной форме: mr"" = F (2)

дифференциальные уравнения движения несвободной материальной точки .

Согласно аксиоме связей, заменив связи их реакциями, можно рассматривать несвободную материальную точку, как свободную, находящуюся под действием активных сил и реакций связей.согласно четвертой аксиоме динамики, F будет равнодействующей активных сил и реакций связей.



Поэтому дифференциальные уравнения движения свободной материальной точки можно использовать для описания движения несвободной точки, помня о том, что проекции сил на прямоугольные оси Fx, Fy, Fz в уравнениях (4) и проекции сил на естественные оси Fτ, Fn, Fb в уравнениях (6) включают в себя не только проекции активных сил, но и проекции реакций связей.

Наличие реакций связей в уравнениях движения точки естественно усложняет решение задач динамики, так как в них появляются дополнительные неизвестные. Для решения задач нужно знать свойства связей и иметь уравнения связей, которых должно быть столько, сколько реакций связей.

Сила Кориолиса равна:

где m - точечная масса, w - вектор угловой скорости вращающейся системы отсчёта, v- вектор скорости движения точечной массы в этой системе отсчёта, квадратными скобками обозначена операция векторного произведения.

Величина называется кориолисовым ускорением.

Си́лаКориоли́са - одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения

ПРАКТИЧЕСКАЯ РАБОТА № 2

Тема: Определение реакций опор.

Цель: Определить реакции опор двухопорной балки.

Оснащение: методические указания; алгоритм; карточки индивидуальных заданий.

Ход работы:

1) Ознакомиться с краткими теоретическими сведениями.

2) Ответить на контрольные вопросы.

3) Выполнить индивидуальное задание.

4) Оформить отчёт.

Краткие теоретические сведения

Пара сил. Момент пары сил

Парой сил называется система из двух параллельных сил равных по величине, противоположных по направлению и не лежащих на одной прямой (рисунок 1).

Рисунок 1 – Пара сил

Плоскость, в которой расположены силы, называют плоскостью пары.

Кратчайшее расстояние между линиями действия сил называется плечом пары.

Момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

М = F·a = F"·a.

Эффект действия пары сил полностью определяется ее моментом. Поэтому момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения (рисунок 2).

Рисунок 2 – Определение знака момента пары сил

Эквивалентность пар. Сложение и равновесие пар сил на плоскости

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Рассмотрим еще одно свойство пары сил, которое является основой для сложения нар.

Не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

Рисунок 3 – Эквивалентные пары сил

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F1·а = F2·b, то состояние тела от такой замены не нарушится.

Подобно силам, пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей.



Две пары можно заменить одной парой, момент которой равен алгебраической сумме моментов исходных пар.

Это применимо к любому количеству пар, лежащих в одной плоскости. Поэтому при произвольном числе слагаемых пар, лежащих в одной плоскости или параллельных плоскостях, момент результирующей пары определится по формуле:

М Σ = М 1 + М 2 + … + М n = Σ М i ,

где моменты пар, вращающие по часовой стрелке принимаются положительными, а против часовой стрелки - отрицательными.

Условие равновесия системы пар, лежащих в одной плоскости: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю.

Теорема: система пар сил, действующих на абсолютно твёрдое тело в одной плоскости, эквивалентно паре сил с моментом, равным алгебраической сумме моментов пар системы.

Равнодействующая пара - это пара сил, заменяющая действие данных пар сил приложенных к твёрдому телу в одной плоскости.

Условие равновесия системы пар сил: для равновесия плоской системы пар сил необходимо и достаточно, чтобы сумма их моментов была равна 0.

Момент силы относительно точки.

Моментом силы относительно точки называется взятое со знаком "плюс" или "минус" произведение модуля силы на ее плечо относительно данной точки. Плечом силы относительно точки называется длина перпендикуляра, опущенного из данной точки на линию действия силы. Принято следующее правило знаков: момент силы относительно данной точки положителен, если сила стремится вращать тело вокруг этой точки против часовой стрелки, и отрицателен в противоположном случае. Если линия действия силы проходит через некоторую точку, то относительно этой точки плечо силы и ее момент равны нулю. Момент силы относительно точки определяется по формуле.

Св-ва момента силы относительно точки :

1.Момент силы относительно данной точки не меняется при переносе силы вдоль её линии действия, т.к. при этом не изменяется ни модуль силы, ни её плечо.

2.Момент силы относительно данной точки равен нулю, если линия действия силы проходит через эту точку, т.к. в этом случае плечо силы равно нулю: а=0

Теорема Пуансо о приведении силы к точке.

Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Операция параллельного переноса силы называется приведением силы к точке, а появляющаяся при этом пара - называется присоединённой парой.

Возможно и обратное действие: силу и пару сил, лежащие в одной плоскости, всегда можно заменить одной силой, равной данной силе, перенесённой параллельно своему начальному направлению в некоторую другую точку.

Дано: сила в точке А (рис. 5.1).

Добавим в точке В уравновешенную систему сил (F"; F"). Образуется пара сил (F; F"). Получим силу в точке В и момент пары m.

Приведение плоской системы произвольно расположенных сил к одному центру. Главный вектор и главный момент системы сил.

Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произвольно выбранную точку - точку приведения (т.О). Применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии ее действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными парами.

Полученную в т.О ССС складывают по способу силового многоугольника и получаем одну силу в т.О – это главный вектор.

Полученную систему присоединённых пар сил также можно сложить и получить одну пару сил, момент которой называется главным моментом.

Главный вектор равен геометрической сумме сил. Главный момент равен алгебраической сумме моментов присоединённых пар сил или моментов исходных сил относительно точке приведения.

Определение и свойства главного вектора и главного момента плоской системы сил.

Свойства главного вектора и главного момента

1 Модуль и направление главного вектора не зависят от выбора центра приведения, т.к. при центре приведения силовой многоугольник, построенный из данных сил, будет один и тот же)

2.Величина и знак главного момента зависят от выбора центра приведения, т.к. при перемене центра приведения меняются плечи сил, а модули их остаются неизменными.

3. Главный вектор и равнодействующая системы сил векторно равны, но в общем случае не эквивалентны, т.к. ещё имеется момент

4. Главный вектор и равнодействующая эквивалентны лишь в частном случае, когда главный момент системы равен нулю, а это при случае, когда центр приведения находится на линии действия равнодействующей

Рассмотрим плоскую систему сил (F 1 ,F 2 , ...,F n),действующих на твердое тело в координатной плоскости Oxy.

Главным вектором системы сил называется вектор R , равный векторной сумме этих сил:

R = F 1 + F 2 + ... + F n = F i .

Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.

Главным моментом системы сил относительно центра O называется вектор L O , равный сумме векторных моментов этих сил относительно точки О:

L O = M O (F 1) +M O (F 2) + ... +M O (F n) = M O (F i).

Вектор R не зависит от выбора центра О, а вектор L O при изменении положения центра О может в общем случае изменяться.

Для плоской системы сил вместо векторного главного момента используют понятие алгебраического главного момента. Алгебраическим главным моментом L O плоской системы сил относительно центра О, лежащего в плоскости действия сил, называют сумму алгебраических моментов э тих сил относительно центра О.

Главный вектор и главный момент плоской системы сил обычно вычисляется аналитическими методами.

Аксиома о условии эквивалентности пар сил в пространстве. Заместо вектора момента каждой пары сил, перпендикулярного плоскости чертежа, указывают лишь направление, в каком пара сил стремится вращать эту плоскость.

Пары сил в пространстве эквивалентны, ежели их моменты геометрически равны. Не изменяя деяния пары сил на жесткое тело, пару сил можно переносить в всякую плоскость, параллельную плоскости деяния пары, также изменять ее силы и плечо, сохраняя постоянным модуль и направление ее момента. Таковым образом, вектор момента пары сил можно переносить в всякую точку, т. е. момент пары сил является вольным вектором. Вектор момента пары сил описывает все три ее элемента: положение плоскости деяния пары, направление вращения и числовое значение момента. Разглядим сложение 2-ух пар сил, расположенных в пересекающихся плоскостях, и докажем последующую аксиому: геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары. Пусть требуется сложить две пары сил, расположенные в пересекающихся плоскостях I и II имеющие моменты

Рис. 34 Выбрав силы этих пар равными по модулю

определим плечи этих пар:

Расположим эти пары сил таковым образом, чтоб силы были ориентированы по полосы пересечения плоскостей KL в противоположные стороны и уравновешивались. Оставшиеся силы образуют пару сил, эквивалентную данным двум парам сил. Эта пара сил имеет плечо ВС = d и момент, перпендикулярный плоскости деяния пары сил, равный по модулю М= Pd.

Геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной пары. Потому что момент пары сил является вольным вектором, перенесем моменты составляющих пар сил в точку В и сложим их, построив на этих моментах параллелограмм. Диагональ этого параллелограмма

представляет собой момент эквивалентной пары Отсюда следует, что вектор т. е. геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары сил:

Таковой метод сложения моментов пар сил именуется правилом параллелограмма моментов. Построение параллелограмма моментов можно заменить построением треугольника моментов.



Применяя построение параллелограмма либо треугольника моментов, можно решить и обратную задачку, т. е. разложить всякую пару сил на две составляющие. Пусть требуется сложить несколько пар сил, расположенных произвольно в пространстве (рис. 35). Определив моменты этих пар, их можно перенести в всякую точку О места. Складывая поочередно моменты этих пар сил, можно выстроить многоугольник моментов пар, замыкающая сторона которого определит момент эквивалентной им пары сил. На (рис. 35) показано построение многоугольника моментов при сложении 3-х пар.

Момент пары сил, сил, эквивалентной данной системе пар сил в пространстве, равен геометрической сумме моментов составляющих пар сил:
или

Плоскость I деяния данной пары сил перпендикулярна направлению ее момента

Ежели момент эквивалентной пары сил равен нулю, то пары сил взаимно уравновешиваются:

Таковым образом, условие равновесия пар сил, произвольно расположенных в пространстве, можно сконструировать так: пары сил, произвольно расположенные в пространстве, взаимно уравновешиваются в этом случае, ежели геометрическая сумма их моментов равна нулю. Ежели пары сил размещены в одной плоскости (рис. 36), то моменты этих пар сил, направленные по одной прямой, складываются алгебраически.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта