Главная » Фасад » Отношения эквивалентности и порядка. Бинарные отношения, свойства отношений. Отношения эквивалентности, порядка и толерантности Отношение эквивалентности множеств обладает следующими свои ствами

Отношения эквивалентности и порядка. Бинарные отношения, свойства отношений. Отношения эквивалентности, порядка и толерантности Отношение эквивалентности множеств обладает следующими свои ствами

Классы эквивалентных элементов и их свойства

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%a%% — некоторый элемент из %%M%%. Рассмотрим множество всех элементов из %%M%%, находящихся в отношении %%R%% к элементу %%a%%.

Классом эквивалентности %%M_a%%

называется множество всех элементов %%M%%, находящихся в отношении %%R%% к элементу %%a%%, то есть множество

$$ M_a = \{x \in M: x~R~a\}. $$

Пример

Пусть %%M%% — множество всех жителей России и %%R%% — отношение эквивалентности «проживать в одном городе». Найти классы эквивалентных элементов %%M_a%% для %%a \in M%%.

Класс элементов, эквивалентных элементу %%a%%, имеет вид: $$ M_a = \{x \in M: x \text{ проживает в одном городе с человеком } a\} $$

В зависимости от элемента %%a%% получаем несколько классов эквивалентности. Например, класс эквивалентности жителей Москвы или Санкт-Петербурга.

Свойства классов эквивалентности

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%M_a, M_b, \dotsc, M_z, \dotsc%% — все классы эквивалентности для отношения %%R%%. Тогда эти классы имеют следующие свойства.

Свойство 1

Для любого элемента %%a \in M%% выполняется условие $$ a \in M_a $$

Действительно, по определению, класс %%M_a = \{x \in M: x~R~a\}%%. Тогда для элемента %%a%% должно выполняться условие %%a \in M_a \leftrightarrow a~R~a%%, которое выполняется в связи с тем, что отношение %%R%% рефлексивно по определению отношения эквивалентности. Следовательно, %%a \in M_a%%.

Как следствие этого свойства можно сказать, что всякий класс %%M_a%% является непустым множеством.

Свойство 2

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Классы %%M_a%% и %%M_b%% равны тогда и только тогда, когда элемент %%a%% находится в отношении %%R%% к элементу %%b%%. $$ M_a = M_b \leftrightarrow a~R~b. $$

Свойство 3

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Тогда классы %%M_a%% и %%M_b%% не имеют общих элементов. $$ M_a \neq M_b \rightarrow M_a \cap M_b = \varnothing $$

Свойство 4

Объединение всех классов эквивалентности множества %%M%% равно множеству %%M%%. $$ \bigcup_{a\in M}{M_a} = M. $$

Разбиение множества

Совокупностью подмножеств %%M_i%%, где %%i \in I%% (множеству индексов), множества %%M%% называется разбиением множества %%M%% если выполняются следующие условия:

  1. Каждое из подмножеств %%M_i%% непусто.
  2. Объединение всех подмножеств %%M_i%% равно множеству %%M%%.
  3. Два различных подмножества %%M_i%% и %%M_j%%, где %%i \neq j%%, не имеют общих элементов.

Теорема. Пусть %%R%% — отношение эквивалентности на множестве %%M%%. Тогда совокупность классов эквивалентности множества %%M%% образует его разбиение.

Действительно, если в качестве подмножеств %%M_i%% взять классы эквивалентности %%M_a%%, то все три условия выполняются:

  1. Каждый класс эквивалентности является непустым множеством, согласно свойству 1 .
  2. Объединение всех классов эквивалентности есть множество %%M%%, согласно свойству 4 .
  3. Два различных класса эквивалентности не имеют общих элементов, согласно свойству 3 .

Все условия определения разбиения выполнены. Следовательно классы эквивалентности есть разбиение множества %%M%%.

Примеры

Пусть дано множество %%M = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0 \}%%, тогда разбиением этого множества могут быть следующие совокупности множеств:

  1. %%A_1 = \{1, 2, 3\}, A_2 = \{4, 5, 6, 7\}, A_3 = \{8, 9, 0 \}%%.
  2. %%B_1 = \{0, 7, 2\}, B_2 = \{1, 3, 5 \}, B_3 = \{4, 6, 8, 9\}%%.

Но следующие совокупности не являются разбиением:

  1. %%C_1 = \{1, 2, 3\}, C_2 = \{4, 5, 6, 7\}, C_3 = \{8, 9, 0, 3\}%%.
  2. %%D_1 = \{0, 7, 2\}, D_2 = \{1, 3, 5 \}, D_3 = \{4, 6, 8, 9\}, D_4 = \varnothing%%.
  3. %%E_1 = \{0, 1, 2\}, E_2 = \{3, 4, 5\}, E_3 = \{6, 7, 8\}%%.

Совокупность множеств %%C_i%% не является разбиением, т.к. оно не удовлетворяет условию 3 разбиения множеств: множества %%C_1%% и %%C_3%% имеют общий элемент %%3%%.

Совокупность множеств %%D_i%% не является разбиением, т.к. оно не удовлетворяет условию 1 разбиения множеств: множество %%D_4%% пусто.

Совокупность множеств %%E_i%% не является разбиением, т.к. оно не удовлетворяет условию 2 разбиения множеств: объединение множеств %%E_1, E_2%% и %%E_3%% не образует множество %%M%%.

I. Разбиение на классы. Отношение эквивалентности

Определение 2.1. Назовем взаимозаменяемыми те и только те объекты некоторого данного множества М, которые обладают одним и тем же набором формальных признаков, существенных в данной ситуации.

Обозначим через М х -множество всех объектов, взаимозаменяемых с объектом х. Очевидно, что х М х и объединение всех М х (при всевозможных х из М) совпадает совсем множеством М:

Предположим, что. Это значит, что существует некоторый элемент z, такой, что он одновременно принадлежит и и. Значит x взаимозаменяем с z и z взаимозаменяем с у. Следовательно, х взаимозаменяем с у, а значит и с любым элементом из. Таким образом. Аналогично показывается и обратное включение. Таким образом, встречающиеся в объединении (2.1) множества либо не пресекаются, либо целиком совпадают.

Определение 2.2. Систему непустых подмножеств {M 1 , M 2 ,….} множества М мы будем называть разбиением этого множества, если

Сам множества при этом называются классами разбиения.

Определение 2.3. Отношение с на множестве М называется эквивалентностью (или отношением эквивалентности), если существует такое разбиение {M 1 , M 2 ,….} множества М такое, что (х, у) выполняется тогда и только тогда, когда х и у принадлежат к некоторому общему классу M i данного разбиения.

Пусть {M 1 , M 2 ,….} разбиение множества М. Определим, исходя из этого разбиения, отношение с на М: (х, у),если х и у принадлежат к некоторому общему классу M i данного разбиения. Очевидно, что отношение с является эквивалентностью. Назовем с отношением эквивалентности, соответствующим данному разбиению.

Определение 2.4. Если в каждом подмножестве M i выбрать содержащийся в нем элемент х i , то этот элемент будем называть эталоном для всякого элемента у, входящего в тоже множество M i . По определению, положим выполненным отношение с* «быть эталоном» (х i , у)

Легко видеть, что эквивалентность с, соответствующая данному разбиению, может быть определена и так: (z, у) если z и у имеют общий эталон (х i , z) и (х i , у).

Пример 2.1: Рассмотрим в качестве М множество целых неотрицательных чисел и возьмем его разбиение на множество М 0 четных чисел и множество М 1 - нечетных. Соответствующее отношение эквивалентности на множестве целых чисел обозначается так:

и читается: n сравнимо с m по модулю 2. В качестве эталонов естественно выбрать 0 - для четных чисел и 1 - для нечетных. Аналогично, разбивая то же множество М на k подмножеств M 0 , M 1 ,… M k-1 , где M j состоит из всех чисел, дающих при делении на k в остатке j, мы придем к отношению эквивалентности:

которое выполняется, если n и m имеют одинаковые остатки при делении на k.

В качестве эталона в каждом M j естественно выбрать соответствующий остаток j.

II. Фактор-множество

Пусть - отношение эквивалентности. Тогда по теореме, существует разбиение {M 1 , M 2 ,….} множества М на классы эквивалентных друг другу элементов - так называемые классы эквивалентности.

Определение 2.5. Множество классов эквивалентности по отношению обозначают М/ и читают фактор-множество множества М по отношению.

Пусть ц: M > S - сюрьективное отображение множества М на некоторое множество S.

Для всякого ц: M > S - сюрьективного отображения существует такое отношение эквивалентности на множестве М, что М/ и S могут быть поставлены во взаимно однозначное соответствие.

III. Свойства эквивалентности

Определение 2.6. Отношение с на множестве М называется эквивалентностью (отношением эквивалентности), если оно рефлексивно, симметрично и транзитивно.

Теорема 2.1: Если отношение с на множестве М рефлексивно, симметрично и транзитивно, существует такое разбиение {M 1 , M 2 ,….} множества М такое, что (х, у) выполняется тогда и только тогда, когда х и у принадлежат к некоторому общему классу M i данного разбиения.

Обратно: Если задано разбиение {M 1 , M 2 ,….} и бинарное отношение с задано как «принадлежать к общему классу разбиения», то с рефлексивно, симметрично и транзитивно.

Доказательство:

Рассмотрим рефлексивное, симметричное и транзитивное отношение с на М. Пусть для любого состоит из всех таких z, для которых (x, z) с

Лемма 2.1: Для любых x и y либо либо

Из леммы и рефлексивности отношения с следует, что множества вида образуют разбиение множества М. (Это разбиение естественно назвать разбиением, соответствующим исходному отношению). Пусть теперь (x, y) с. Это значит, что y. Но и х в силу (x, х) с. Следовательно, оба элемента входят в. Итак, если (x, y) с, то х и у входят в общий класс разбиения. Наоборот, пусть uи v. Покажем, что (u, v) с, Действительно, имеем (x, u) с и (x, v) с. Отсюда по симметричности (u, x) с. По транзитивности из (u, x) с и (x, v) с следует (u, v) с. Первая часть теоремы доказана.

Пусть дано разбиение {M 1 , M 2 ,….} множества М. Т.к. объединение всех классов разбиения совпадает с М, то любой хвходит в некоторый класс. Отсюда следует, что (x, х) с, т.е. с - рефлексивно. Если x и y входят в некоторый класс, то y и x входят в тот же класс. Это означает, что из (x, y) с вытекает (y, x) с, т.е. отношение симметрично. Пусть теперь выполнено (x, y) с и (y, z) с. Это означает, что x и y входят в некоторый класс, а y и z входят в некоторый класс. Классы имеют общий элемент у, а, следовательно, совпадают. Значит x и z входят в класс, т.е. выполняется (x, z) с и отношение транзитивно. Теорема доказана.

IV. Операции над эквивалентностями.

Определим здесь некоторые теоретико-множественные операции над эквивалентностями и приведем без доказательств их важные свойства.

Вспомним, что отношение - это пара (), где М - множество элементов, вступающих в отношение, а - множество пар, для которых отношение выполнено.

Определение 2.7. Пересечением отношений (с 1 , М) и (с 2 , М) назовем отношение, определенное пересечением соответствующих подмножеств. (x, y) с 1 с 2 тогда и только тогда, когда одновременно (x, y) с 1 и (x, y) с 2 .

Теорема 2.2: Пересечение с 1 с 2 эквивалентностей с 1 с 2 само является отношением эквивалентности.

Определение 2.8. Объединением отношений (с 1 , М) и (с 2 , М) назовем отношение, определенное объединением соответствующих подмножеств. (x, y) с 1 с 2 тогда и только тогда, когда (x, y) с 1 или (x, y) с 2 .

Теорема 2.3: Для того, чтобы объединение с 1 с 2 эквивалентностей с 1 с 2 само по себе было отношением эквивалентности необходимо и достаточно, чтобы

с 1 с 2 =с 1 с 2

Определение 2.9. Прямой суммой отношений (с 1 , М 1) и (с 2 , М 2) называется отношение). Прямая сумма обозначается (с 1 , М 1) (с 2 , М 2).

Таким образом, если (с 1 , М 1) (с 2 , М 2)= (), то M=.

Теорема 2.4: Если, а отношения - эквивалентности, то прямая сумма отношений (с 1 , М 1) (с 2 , М 2)= (), также является эквивалентностью.

V. Типы отношений

Введем еще несколько важных типов отношений. Примеры будут приведены в третьей главе.

Определение 2.10. Отношение с на множестве М называется толерантностью, если оно рефлексивно и симметрично.

Определение 2.11. Отношение с на множестве М называется отношением строгого порядка если оно антирефлексивно и транзитивно.

Определение 2.12. Отношение строгого порядка с называется совершенным строгим порядком, если для всякой пары элементов x и y из М верно либо (х, у), либо (у, х)

Определение 2.13. Отношение с на множестве М называется отношением нестрогого порядка если оно может быть представлено в виде:

где строгий порядок на М, а Е -диагональное отношение.

Лекция 22. Отношения эквивалентности и порядка на множестве

1. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы.

2. Отношение порядка. Строгое и нестрогое отношения порядка, отношение линейного порядка. Упорядоченность множеств.

3. Основные выводы

Рассмотрим на множестве дробей X = {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} отношение равенства. Это отношение:

Рефлексивно, так как всякая дробь равна сама себе;

Симметрично, так как из того, что дробь m /n равна дроби p /q , следует, что дробь p /q равна дроби m /n ;

Транзитивно, так как из того, что дробь m /n равна дроби p /q и дробь p /q равна дроби r /s , следует, что дробь m /n равна дроби r /s .

Про отношение равенства дробей говорят, что оно является отношением эквивалентности .

Определение. Отношение R на множестве X называется отноше­нием эквивалентности, если оно одновременно обладает свойства­ми рефлексивности, симметричности и транзитивности.

Примерами отношений эквивалентности могут служить отноше­ния равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются парал­лельными).

Почему в математике выделили этот вид отношений? Рассмот­рим отношение равенства дробей, заданное на множестве X = {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} (Рис.106). Видим, что множество разбилось на три подмножества: {1/2, 2/4, 3/6}, {1/3, 2/6}, {1/4}. Эти подмножества не пересекаются, а их объединение совпадает с множест­вом Х, т.е. имеем разбиение множест­ва X на классы. Это не случайно.

Вообще, если на множестве X задано отношение эквивалентно­сти, то оно порождает разбиение этого множества на попарно не­пересекающиеся подмножества (классы эквивалентности).

Так, мы установили, что отношению равенства на множестве дробей {1/2, 1/3, 1/4, 2/4, 2/6, 3/6} соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных меж­ду собой дробей.

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве X, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Рассмотрим, например, на множестве X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} отношение «иметь один и тот же остаток при делении на 3». Оно по­рождает разбиение множества X на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9), во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 1, 4, 7, 10), и в третий - все числа, при делении которых на 3 в остатке получается 2 (это числа 2, 5, 8). Действительно, полученные подмножества не пересекаются и их объединение совпадает с множе­ством X. Следовательно, отношение «иметь один и тот же остаток при делении на 3», заданное на множестве X, является отношением экви­валентности. Заметим, что утверждение о взаимосвязи отношения эквивалентности и разбиения множества на классы нуждается в доказательстве. Мы его опускаем. Скажем только, что если отношение эквивалентности имеет название, то соответствующее название дается и классам. Например, если на множестве отрезков задается отношение равенства (а оно является отношением эквивалентности), то множест­во отрезков разбивается на классы равных отрезков (см. рис. 99). От­ношению подобия соответствует разбиение множества треугольников на классы подобных треугольников.



Итак, имея отношение эквивалентности на некотором множестве, мы можем разбить это множество на классы. Но можно поступить и наоборот: сначала разбить множество на классы, а затем определить отношение эквивалентности, считая, что два элемента эквивалентны тогда и только тогда, когда они принадлежат одному классу рассмат­риваемого разбиения.

Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математи­ки. Почему?

Во-первых , эквивалентный - это значит равносильный, взаимо­заменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности {1/2, 2/4, 3/6} неразличимы с точки зрения отношения равен­ства, и дробь 3/6 может быть заменена другой, например 1/2. И эта замена не изменит результата вычислений.

Во-вторых , поскольку в классе эквивалентности оказываются эле­менты, неразличимые с точки зрения некоторого отношения, то счи­тают, что класс эквивалентности определяется любым своим предста­вителем, т.е. произвольным элементом этого класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. Определение класса эквивалентности по одному предста­вителю позволяет вместо всех элементов множества изучать совокуп­ность отдельных представителей из классов эквивалентности. Напри­мер, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольни­ков и т.д. Свойства, присущие некоторому классу, рассматриваются на одном его представителе.

В-третьих , разбиение множества на классы с помощью отноше­ния эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то об­щее, что имеют параллельные между собой прямые.

Вообще любое понятие, которым оперирует человек, представляет собой некоторый класс эквивалентности. «Стол», «дом», «книга» - все эти понятия являются обобщенными представлениями о множестве конкретных предметов, имеющих одинаковое назначение.

Другим важным видом отношений являются отношения порядка.

Определение. Отношение R на множестве X называется отноше­нием порядка, если оно одновременно обладает свойствами анти­симметричности и транзитивности .

Примерами отношений порядка могут служить: отношение «меньше» на множестве натуральных чисел; отношение «короче» на множе­стве отрезков, поскольку они антисимметричны и транзитивны.

Если отношение порядка обладает еще свойством связанности, то говорят, что оно является отношением линейного порядка.

Например, отношение «меньше» на множестве натуральных чисел является отношением линейного порядка, так как обладает свойства­ми антисимметричности, транзитивности и связанности.

Определение. Множество X называется упорядоченным, если на нем задано отношение порядка.

Так, множество N натуральных чисел можно упорядочить, если за­дать на нем отношение «меньше».

Если отношение порядка, заданное на множестве X, обладает свойст­вом связанности, то говорят, что оно линейно упорядочивает множество X.

Например, множество натуральных чисел можно упорядочить и с помощью отношения «меньше», и с помощью отношения «кратно» - оба они являются отношениями порядка. Но отношение «меньше», в отличие от отношения «кратно», обладает еще и свойством связанности. Значит, отношение «меньше» упорядочивает множество на­туральных чисел линейно.

Не следует думать, что все отношения делятся на отношения экви­валентности и отношения порядка. Существует огромное число от­ношений, не являющихся ни отношениями эквивалентности, ни отно­шениями порядка.

ОТНОШЕНИЯ

Отношениями называются соответствия между элементами одного и того же множества, то есть соответствия, у которых базисные множества совпадают:

x А, у А отношение Г = {(x,y)| P(x,y)}, P(x,y) какое-то утверждение (предикат).

Если (x,y) Г, то говорят, что х находятся в отношении Г к у .

Например, иметь одинаковый остаток от деления (для чисел), быть на одинаковом расстоянии от прямой (для точек), родственные отношения или соседские отношения (для множества людей).

Более строгое определение:

Бинарным отношением называется два множества:

1) несущее множество А,

2) множество пар Г={(x,y)| x A, y A}, являющегося подмножеством квадрата несущего множества.

n-местное отношение, или n-арное (тернарное, кватернарное, …) отношение – это несущее множество А и множества кортежной размерностью n ,являющегося подмножеством множества А n .

Пример тернарного отношения: входить в «тройку игроков».

Если под отношением понимать просто множество кортежей (без несущего множества), то можно использовать все законы теории множеств. Универсальным множеством будет квадрат несущего множества, то есть множество всех возможных кортежей (когда каждый элемент находится в отношении к любому другому элементу).

Отношение можно определить также как двухместный предикат предметных переменных х, у , принимающего значение «истина», если (х, у) Г и значение «ложь», если не принадлежит.

Обозначения: (х, у) Г, у = Г(x), у = Гx или просто xГу , например, отношение равенства(х = у) , отношение порядка(х < у) .

Если (х, у) Г , то xГу принимает значение «истина», иначе – «ложь».

Если отношения заданы на дискретном множестве, их можно записывать в виде матрицы

A i , j =

Отношение – частный случай соответствия, для него можно ввести обратные отношения, композицию отношений:

Г -1 ={(y,x)| (x,y) Г}, Г ◦ Δ = {(x,z) | y ((x,y) Г &(y,z Δ))}.

Вводят понятие «единичного элемента» Δ 0 = {(x,x)} – «быть в отношении к самому себе». В матричном представлении это будет - главная диагональ).

Свойства бинарных отношений

1 Рефлексивность «находиться в отношении к самому себе»

хГх – истина (например, отношения х=x, х≤x, х≥x ).

2 Антирефлексивность - «не быть в отношении к самому себе»

хГx - ложь (например, отношения х≠x, хх ).

Если множество не «рефлексивно», то это еще не значит что оно «антирефлексивно».

3 Симметричность «независимость от того, какой элемент первый, какой второй»

хГу – истина → уГх – истина (например, отношения х=у, х≠у ).

4 Антисимметричность «не превосходить»

(хГу – истина) & (yГх – истина) → (х=у) (например, отношения х≤у, х≥у ).

5 Асимметричность (несимметричность) «превосходить»

хГу – истина → уГх –ложь (например, отношения х<у, х>у ).

6. Транзитивность «передаточность»

(хГу – истина) & (yГz – истина) → (хГz – истина) (например, отношения х=у, х<у, х>у, х≤у, х≥у , отношение х≠у транзитивностью не обладает).

СПЕЦИАЛЬНЫЕ БИНАРНЫЕ ОТНОШЕНИЯ

Рассмотрим «отношение эквивалентности», «отношение нестрогого порядка», «отношение строгого порядка» и «отношение доминирования».

Отношение эквивалентности

Отношением эквивалентности называется рефлексивное (х~x) , симметричное ((х~y)=(y~x)) , транзитивное ((х~у)&(y~z)→(х~z)) отношение.

Примеры: равенство, тождественность, эквивалентность множеств, эквивалентность логических высказываний, подобие геометрических фигур, параллельность прямых, а вот перпендикулярность прямых - не является отношением эквивалентности.

Подмножество элементов, эквивалентных одному элементу, называется классом эквивалентности или смежным классом.

Любой элемент из класса называется представителем класса.

Свойства.

Все элементы в классе эквивалентны между собой.

Элементы из разных классов не эквивалентны.

Один элемент может входить только в свой класс.

Все множество можно представить как объединение классов.

Таким образом, множество классов эквивалентности или полная система классов образуют разбиение несущего множества. Напоминание: разбиение множества – это представление его в виде непересекающихся подмножеств.

Индекс разбиения – число классов эквивалентности.

Фактор-множество относительно отношения эквивалентности - это множество всех классов или представителей класса.

Мощность фактора-множества равна индексу разбиения.

Отношения порядка

Отношением порядка называют два вида бинарных отношений.

Отношениемнестрогого порядка называется рефлексивное (х≥x) , антисимметричное ((x≤y)&(y≤x)→ (x=y)) , транзитивное ((х≥у)&(y≥z)→(х≥z)) отношение .

Говорят, что на множестве установлен нестрогий порядок. В понятия ≤ , ≥ вкладывают более широкий смысл: не хуже – не лучше, не раньше – не позже и так далее. В теории множеств пример нестрого порядка - нестрогое включение (быть подмножеством другого множества0.

Отношениемстрогого порядка называется антирефлексивное ((х, антисимметричное ((x, транзитивное

((х>у)&(y отношение .

Говорят, что на множестве установлен строгий порядок. В понятия < , > вкладывают более широкий смысл: хуже – лучше, раньше – позже и так далее. В теории множеств пример строго порядка - строгое включение (быть подмножеством другого множества и при этом не быть равным ему).

Упорядоченные множества

Множество называется линейно упорядоченным , если любы едва элемента можно сравнить)то есть сказать: больше, меньше или равно).

Множество действительных или целых чисел: классические примеры упорядоченного множества.

Если на множестве удается установить отношение порядка, но не для всех пар элементов, то такое множество называется частично упорядоченным .

Это множество векторов, множество комплексных чисел, множества в теории множеств. В некоторых случаях мы можем говорит «больше – меньше» или «являться надмножеством и подмножеством», но не во всех случаях.

Арифметику остатков лучше всего вводить с помощью отношения эквивалентности. Поскольку такие отношения будут играть важную роль как в этой главе, так и далее, стоит подробно разобрать это базисное понятие.

Пусть X - конечное или бесконечное множество. Отношением на X называется правило, по которому «сравниваются» его элементы. Это неформальное определение, но его вполне достаточно для наших целей. Заметим, что для определения отношения мы должны четко задать само множество; другими словами, нам должно быть ясно, какие элементы нужно сравнивать.

Рассмотрим несколько примеров. На множестве целых чисел есть много простых отношений, вроде «равно», «не равно», «меньше, чем», «меньше или равно». На множестве цветных мячей у нас есть отношение «тот же цвет». Последний пример, ввиду своей конкретности, хорош для запоминания в качестве модельного случая. Кстати, мы предполагаем, что каждый мяч из множества окрашен только в один цвет, пестрые мячи мы не рассматриваем.

Отношение эквивалентности - это отношение весьма специфичного вида. Возвращаясь к общим определениям, предположим, что X - множество, в котором было определено отношение. Удобно зафиксировать какой-нибудь символ для обозначения эквивалентности, обычно употребляют значок «~». С этого момента «~» будет отношением эквивалентности,

если для всех выполнены следующие свойства:

Первое свойство называется рефлексивностью. Оно говорит, что когда мы имеем отношение эквивалентности, любой элемент эквивалентен сам себе. Это свойство верно для равенства целых чисел: любое целое число равно самому себе. Но оно не выполнено для отношения Поэтому на множестве не является отношением эквивалентности.

Второе свойство называется симметричностью. Отношение на множестве целых чисел не симметрично. Действительно, в то время как неравенство ложно. С другой стороны, отношение на рефлексивно, но не симметрично.

Третье - свойство транзитивности. На множестве целых чисел отношения «равно», «меньше, чем», «меньше или равно», - транзитивны. А вот «не равно» этим свойством не обладает. Действительно, и но из этих неравенств не следует Добавим, что симметрично, но не рефлексивно.

Мы предусмотрительно привели примеры отношений, которые не удовлетворяют этим свойствам, потому что это единственный путь к пониманию их действительного смысла. Именно владение примерами и контрпримерами обеспечивает успех в усвоении новых понятий. В примерах отношения эквивалентности нет недостатка. Равенство целых чисел, очевидно, удовлетворяет всем свойствам, выписанным выше. Отношение «тот же цвет» на множестве цветных мячей - еще один простой и, пожалуй, самый яркий пример. Среди примеров отношения эквивалентности на множестве многоугольников находятся такие отношения, как «одинаковое число сторон» и «одна и та же площадь».

Отношение эквивалентности используют для классификации элементов данного множества, группируя их в подмножества по принципу схожести свойств. Естественное разбиение множества, индуцированное отношением эквивалентности, называется разбиением на классы эквивалентности. Пусть на множестве X задано отношение эквивалентности и х - элемент этого множества. Классом эквивалентности элемента х называется подмножество в X, состоящее из всех элементов, эквивалентных х относительно Обозначив класс эквивалентности элемента х символом х, можно записать:

Приведем простой пример. Обозначим символом М множество цветных мячей с отношением эквивалентности «тот же цвет». Класс эквивалентности красного мяча в М состоит из всех красных мячей, содержащихся в М.

Одно из свойств классов эквивалентности настолько важно, что мы назовем его основным принципом классов эквивалентности. Принцип гласит, что любой элемент класса эквивалентности - хороший представитель всего класса. Иначе говоря, зная один элемент из класса эквивалентности, можно немедленно восстановить этот класс полностью. Этот факт бросается в глаза, когда мы имеем дело с множеством М цветных мячей и отношением «тот же цвет». Предположим, Вам говорят, что в картонной коробке находятся все элементы одного класса эквивалентности множества М. Увидев один элемент из этого множества (допустим, это синий мяч), Вы немедленно заключаете, что в коробке лежит класс эквивалентности всех синих мячей М. Проще и быть не может!

Вернемся к абстрактному множеству X с отношением эквивалентности Основной принцип говорит, что если у - элемент из класса эквивалентности х, то классы эквивалентности х и у совпадают. То же самое можно выразить короче:

Докажем это непосредственно из определяющих свойств отношения эквивалентности. Если то, по определению класса эквивалентности, Ввиду симметричности, Но если то и Тогда свойство транзитивности влечет Мы доказали включение: . Похожее рассуждение доказывает обратное включение: Вероятно, это все может показаться несколько педантичным. Но основной принцип - такой источник неразберихи и ошибок, что нам не стоит жалеть усилий на прояснение его точного смысла. Кроме того, полезно осознать, что он непосредственно следует из определения отношения эквивалентности. Кстати о педантичности: вы поняли, что свойство вытекает из рефлексивности?

Основной принцип приводит к важнейшему свойству отношения эквивалентности. Как и раньше, пусть X - множество с отношением эквивалентности тогда

(1) X - объединение своих классов эквивалентности относительно и

(2) два разных класса эквивалентности не могут иметь общего элемента.

Первое утверждение следует из часто упоминаемого факта: класс эквивалентности элемента содержит сам этот элемент. Для доказательства второго предположим, что элементы Так как то по основному принципу Аналогично Так что у. Заметим, что свойства (1) и (2) означают, что множество X разбито на непересекающиеся подмножества, классы эквивалентности. Другими словами, мы имеем дело с разбиением множества

Множество, составленное из классов эквивалентности множества X относительно отношения эквивалентности имеет специальное название: фактормножество X по отношению Отметим, что элементы фактормножества - это подмножества в Поэтому фактормножество не является подмножеством в X, будьте внимательны!

Закончим этот параграф примером, в котором проявляется наконец истинная природа дробей. Из чего состоит дробь? Когда Вы на нее смотрите, то видите два числа, одно из которых (знаменатель) должно быть ненулевым. Конечно, Вы ее, вероятно, воспринимаете как частное. Но если на Вас надавить, Вы можете попытаться выбрать более легкий выход и сказать, что дробь в действительности - пара чисел, одно из которых не равно нулю. Однако, такое определение некорректно.

В математике две пары равны, если они имеют одинаковые первый и второй элементы. Так, пары (2,4) и (1,2) неравны. Но дроби 2/4 и 1/2 равны; так что дроби - не пары чисел.

Что же такое дроби? Это элементы фактормножества! Рассмотрим множество пар целых На стандартном жаргоне Две пары и целых чисел можно теперь называть эквивалентными, если Легко проверить, что это отношение эквивалентности, а дробь - класс эквивалентности множества относительно этого отношения. Следовательно, означает не пару а бесконечное множество всех пар из эквивалентных Итак, множество рациональных чисел - это фактормножество множества по только что определенному отношению эквивалентности.

Представьте себе на минуту, что Вы до сих пор ничего о дробях не слышали и Вам придется исходить из описания, сделанного выше. Если Вам теперь скажут, что нужно вычислять с дробями, Вы почувствуете, что имеете вескую причину для паники: Вы же только что выучили, что дробь - это бесконечное множество. Мысль о прибавлении к одному бесконечному множеству другого бесконечного множества внушает легкое беспокойство. Именно в этот момент приходит на помощь основной принцип. Вам не нужно заботиться о бремени всего бесконечного множества; нужно знать только один элемент из него. Этот элемент расскажет Вам обо всем, что

необходимо знать о целом классе эквивалентности. Более того, Вас устроит любой элемент класса.

Итак, Вы можете оперировать с 1/2 как обычно, так же, как если бы это была пара чисел. Вы вспоминаете, что дробь - это класс эквивалентности, только когда (в процессе вычислений) оказывается, что дробь можно сократить. В этот момент вы заменяете одного представителя класса эквивалентности на другой для упрощения вычислений.

Зачем мы сделали такое длинное отступление о дробях? В следующем параграфе определятся отношение эквивалентности на множестве а фактормножество этого отношения играет абсолютно фундаментальную роль в этой книге. Как и в случай дробей, классы эквивалентности будут бесконечны, а нам предстоит делать вычисления с ними. Но теперь Вы знаете, что нет причин для волнения.




Предыдущая статья: Следующая статья: